Files
InvokeAI/invokeai/backend/stable_diffusion/diffusion/cross_attention_control.py
psychedelicious b378cfcb46 cleanup: remove unused scripts, cruft
App runs & tests pass.
2024-03-20 15:05:25 +11:00

219 lines
9.1 KiB
Python

# adapted from bloc97's CrossAttentionControl colab
# https://github.com/bloc97/CrossAttentionControl
import enum
from dataclasses import dataclass, field
from typing import Optional
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import Attention, SlicedAttnProcessor
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from invokeai.backend.util.devices import torch_dtype
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
class CrossAttnControlContext:
def __init__(self, arguments: Arguments):
"""
:param arguments: Arguments for the cross-attention control process
"""
self.cross_attention_mask: Optional[torch.Tensor] = None
self.cross_attention_index_map: Optional[torch.Tensor] = None
self.arguments = arguments
def get_active_cross_attention_control_types_for_step(
self, percent_through: float = None
) -> list[CrossAttentionType]:
"""
Should cross-attention control be applied on the given step?
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
"""
if percent_through is None:
return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
opts = self.arguments.edit_options
to_control = []
if opts["s_start"] <= percent_through < opts["s_end"]:
to_control.append(CrossAttentionType.SELF)
if opts["t_start"] <= percent_through < opts["t_end"]:
to_control.append(CrossAttentionType.TOKENS)
return to_control
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: CrossAttnControlContext):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
:param model: The unet model to inject into.
:return: None
"""
# adapted from init_attention_edit
device = context.arguments.edited_conditioning.device
# urgh. should this be hardcoded?
max_length = 77
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
mask = torch.zeros(max_length, dtype=torch_dtype(device))
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal": # or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next(
(p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size
)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
@dataclass
class SwapCrossAttnContext:
modified_text_embeddings: torch.Tensor
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
mask: torch.Tensor # in the target space of the index_map
cross_attention_types_to_do: list[CrossAttentionType] = field(default_factory=list)
def wants_cross_attention_control(self, attn_type: CrossAttentionType) -> bool:
return attn_type in self.cross_attention_types_to_do
@classmethod
def make_mask_and_index_map(
cls, edit_opcodes: list[tuple[str, int, int, int, int]], max_length: int
) -> tuple[torch.Tensor, torch.Tensor]:
# mask=1 means use original prompt attention, mask=0 means use modified prompt attention
mask = torch.zeros(max_length)
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in edit_opcodes:
if b0 < max_length:
if name == "equal":
# these tokens remain the same as in the original prompt
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
return mask, indices
class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
# TODO: dynamically pick slice size based on memory conditions
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
# kwargs
swap_cross_attn_context: SwapCrossAttnContext = None,
**kwargs,
):
attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
# if cross-attention control is not in play, just call through to the base implementation.
if (
attention_type is CrossAttentionType.SELF
or swap_cross_attn_context is None
or not swap_cross_attn_context.wants_cross_attention_control(attention_type)
):
# print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass")
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
# else:
# print(f"SwapCrossAttnContext for {attention_type} active")
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(
attention_mask=attention_mask,
target_length=sequence_length,
batch_size=batch_size,
)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
original_text_embeddings = encoder_hidden_states
modified_text_embeddings = swap_cross_attn_context.modified_text_embeddings
original_text_key = attn.to_k(original_text_embeddings)
modified_text_key = attn.to_k(modified_text_embeddings)
original_value = attn.to_v(original_text_embeddings)
modified_value = attn.to_v(modified_text_embeddings)
original_text_key = attn.head_to_batch_dim(original_text_key)
modified_text_key = attn.head_to_batch_dim(modified_text_key)
original_value = attn.head_to_batch_dim(original_value)
modified_value = attn.head_to_batch_dim(modified_value)
# compute slices and prepare output tensor
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // attn.heads),
device=query.device,
dtype=query.dtype,
)
# do slices
for i in range(max(1, hidden_states.shape[0] // self.slice_size)):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
original_key_slice = original_text_key[start_idx:end_idx]
modified_key_slice = modified_text_key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
original_attn_slice = attn.get_attention_scores(query_slice, original_key_slice, attn_mask_slice)
modified_attn_slice = attn.get_attention_scores(query_slice, modified_key_slice, attn_mask_slice)
# because the prompt modifications may result in token sequences shifted forwards or backwards,
# the original attention probabilities must be remapped to account for token index changes in the
# modified prompt
remapped_original_attn_slice = torch.index_select(
original_attn_slice, -1, swap_cross_attn_context.index_map
)
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
mask = swap_cross_attn_context.mask
inverse_mask = 1 - mask
attn_slice = remapped_original_attn_slice * mask + modified_attn_slice * inverse_mask
del remapped_original_attn_slice, modified_attn_slice
attn_slice = torch.bmm(attn_slice, modified_value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# done
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SwapCrossAttnProcessor(SlicedSwapCrossAttnProcesser):
def __init__(self):
super(SwapCrossAttnProcessor, self).__init__(slice_size=int(1e9)) # massive slice size = don't slice