mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-11 04:14:56 -05:00
261 lines
6.5 KiB
TypeScript
261 lines
6.5 KiB
TypeScript
import { logger } from 'app/logging/logger';
|
|
import { RootState } from 'app/store/store';
|
|
import { NonNullableGraph } from 'features/nodes/types/types';
|
|
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
|
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
|
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
|
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
|
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
|
import { addVAEToGraph } from './addVAEToGraph';
|
|
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
|
import {
|
|
CLIP_SKIP,
|
|
LATENTS_TO_IMAGE,
|
|
MAIN_MODEL_LOADER,
|
|
METADATA_ACCUMULATOR,
|
|
NEGATIVE_CONDITIONING,
|
|
NOISE,
|
|
POSITIVE_CONDITIONING,
|
|
TEXT_TO_IMAGE_GRAPH,
|
|
TEXT_TO_LATENTS,
|
|
} from './constants';
|
|
|
|
/**
|
|
* Builds the Canvas tab's Text to Image graph.
|
|
*/
|
|
export const buildCanvasTextToImageGraph = (
|
|
state: RootState
|
|
): NonNullableGraph => {
|
|
const log = logger('nodes');
|
|
const {
|
|
positivePrompt,
|
|
negativePrompt,
|
|
model,
|
|
cfgScale: cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
clipSkip,
|
|
shouldUseCpuNoise,
|
|
shouldUseNoiseSettings,
|
|
} = state.generation;
|
|
|
|
// The bounding box determines width and height, not the width and height params
|
|
const { width, height } = state.canvas.boundingBoxDimensions;
|
|
|
|
const { shouldAutoSave } = state.canvas;
|
|
|
|
if (!model) {
|
|
log.error('No model found in state');
|
|
throw new Error('No model found in state');
|
|
}
|
|
|
|
const use_cpu = shouldUseNoiseSettings
|
|
? shouldUseCpuNoise
|
|
: initialGenerationState.shouldUseCpuNoise;
|
|
|
|
/**
|
|
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
|
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
|
* ids.
|
|
*
|
|
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
|
* the `fit` param. These are added to the graph at the end.
|
|
*/
|
|
|
|
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
|
const graph: NonNullableGraph = {
|
|
id: TEXT_TO_IMAGE_GRAPH,
|
|
nodes: {
|
|
[POSITIVE_CONDITIONING]: {
|
|
type: 'compel',
|
|
id: POSITIVE_CONDITIONING,
|
|
is_intermediate: true,
|
|
prompt: positivePrompt,
|
|
},
|
|
[NEGATIVE_CONDITIONING]: {
|
|
type: 'compel',
|
|
id: NEGATIVE_CONDITIONING,
|
|
is_intermediate: true,
|
|
prompt: negativePrompt,
|
|
},
|
|
[NOISE]: {
|
|
type: 'noise',
|
|
id: NOISE,
|
|
is_intermediate: true,
|
|
width,
|
|
height,
|
|
use_cpu,
|
|
},
|
|
[TEXT_TO_LATENTS]: {
|
|
type: 't2l',
|
|
id: TEXT_TO_LATENTS,
|
|
is_intermediate: true,
|
|
cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
},
|
|
[MAIN_MODEL_LOADER]: {
|
|
type: 'main_model_loader',
|
|
id: MAIN_MODEL_LOADER,
|
|
is_intermediate: true,
|
|
model,
|
|
},
|
|
[CLIP_SKIP]: {
|
|
type: 'clip_skip',
|
|
id: CLIP_SKIP,
|
|
is_intermediate: true,
|
|
skipped_layers: clipSkip,
|
|
},
|
|
[LATENTS_TO_IMAGE]: {
|
|
type: 'l2i',
|
|
id: LATENTS_TO_IMAGE,
|
|
is_intermediate: !shouldAutoSave,
|
|
},
|
|
},
|
|
edges: [
|
|
{
|
|
source: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: TEXT_TO_LATENTS,
|
|
field: 'negative_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: TEXT_TO_LATENTS,
|
|
field: 'positive_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MAIN_MODEL_LOADER,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MAIN_MODEL_LOADER,
|
|
field: 'unet',
|
|
},
|
|
destination: {
|
|
node_id: TEXT_TO_LATENTS,
|
|
field: 'unet',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: TEXT_TO_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NOISE,
|
|
field: 'noise',
|
|
},
|
|
destination: {
|
|
node_id: TEXT_TO_LATENTS,
|
|
field: 'noise',
|
|
},
|
|
},
|
|
],
|
|
};
|
|
|
|
// add metadata accumulator, which is only mostly populated - some fields are added later
|
|
graph.nodes[METADATA_ACCUMULATOR] = {
|
|
id: METADATA_ACCUMULATOR,
|
|
type: 'metadata_accumulator',
|
|
generation_mode: 'txt2img',
|
|
cfg_scale,
|
|
height,
|
|
width,
|
|
positive_prompt: '', // set in addDynamicPromptsToGraph
|
|
negative_prompt: negativePrompt,
|
|
model,
|
|
seed: 0, // set in addDynamicPromptsToGraph
|
|
steps,
|
|
rand_device: use_cpu ? 'cpu' : 'cuda',
|
|
scheduler,
|
|
vae: undefined, // option; set in addVAEToGraph
|
|
controlnets: [], // populated in addControlNetToLinearGraph
|
|
loras: [], // populated in addLoRAsToGraph
|
|
clip_skip: clipSkip,
|
|
};
|
|
|
|
// add LoRA support
|
|
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
|
|
|
// optionally add custom VAE
|
|
addVAEToGraph(state, graph);
|
|
|
|
// add dynamic prompts - also sets up core iteration and seed
|
|
addDynamicPromptsToGraph(state, graph);
|
|
|
|
// add controlnet, mutating `graph`
|
|
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
|
|
|
// NSFW & watermark - must be last thing added to graph
|
|
if (state.system.shouldUseNSFWChecker) {
|
|
// must add before watermarker!
|
|
addNSFWCheckerToGraph(state, graph);
|
|
}
|
|
|
|
if (state.system.shouldUseWatermarker) {
|
|
// must add after nsfw checker!
|
|
addWatermarkerToGraph(state, graph);
|
|
}
|
|
|
|
if (
|
|
!state.system.shouldUseNSFWChecker &&
|
|
!state.system.shouldUseWatermarker
|
|
) {
|
|
graph.edges.push({
|
|
source: {
|
|
node_id: METADATA_ACCUMULATOR,
|
|
field: 'metadata',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'metadata',
|
|
},
|
|
});
|
|
}
|
|
|
|
return graph;
|
|
};
|