Files
InvokeAI/invokeai/backend/stable_diffusion/diffusion/shared_invokeai_diffusion.py
2023-08-15 11:07:43 -04:00

664 lines
27 KiB
Python

from __future__ import annotations
from contextlib import contextmanager
from dataclasses import dataclass
import math
from typing import Any, Callable, Dict, Optional, Union, List
import numpy as np
import torch
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from typing_extensions import TypeAlias
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from .cross_attention_control import (
Arguments,
Context,
CrossAttentionType,
SwapCrossAttnContext,
get_cross_attention_modules,
setup_cross_attention_control_attention_processors,
)
from .cross_attention_map_saving import AttentionMapSaver
ModelForwardCallback: TypeAlias = Union[
# x, t, conditioning, Optional[cross-attention kwargs]
Callable[
[torch.Tensor, torch.Tensor, torch.Tensor, Optional[dict[str, Any]]],
torch.Tensor,
],
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor],
]
@dataclass
class BasicConditioningInfo:
embeds: torch.Tensor
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
# weight: float
# mode: ConditioningAlgo
def to(self, device, dtype=None):
self.embeds = self.embeds.to(device=device, dtype=dtype)
return self
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
def to(self, device, dtype=None):
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
return super().to(device=device, dtype=dtype)
@dataclass(frozen=True)
class PostprocessingSettings:
threshold: float
warmup: float
h_symmetry_time_pct: Optional[float]
v_symmetry_time_pct: Optional[float]
class InvokeAIDiffuserComponent:
"""
The aim of this component is to provide a single place for code that can be applied identically to
all InvokeAI diffusion procedures.
At the moment it includes the following features:
* Cross attention control ("prompt2prompt")
* Hybrid conditioning (used for inpainting)
"""
debug_thresholding = False
sequential_guidance = False
@dataclass
class ExtraConditioningInfo:
tokens_count_including_eos_bos: int
cross_attention_control_args: Optional[Arguments] = None
@property
def wants_cross_attention_control(self):
return self.cross_attention_control_args is not None
def __init__(
self,
model,
model_forward_callback: ModelForwardCallback,
):
"""
:param model: the unet model to pass through to cross attention control
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
"""
config = InvokeAIAppConfig.get_config()
self.conditioning = None
self.model = model
self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
self.sequential_guidance = config.sequential_guidance
@contextmanager
def custom_attention_context(
self,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int,
):
old_attn_processors = None
if extra_conditioning_info and (extra_conditioning_info.wants_cross_attention_control):
old_attn_processors = unet.attn_processors
# Load lora conditions into the model
if extra_conditioning_info.wants_cross_attention_control:
self.cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
self.cross_attention_control_context,
)
try:
yield None
finally:
self.cross_attention_control_context = None
if old_attn_processors is not None:
unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving
# self.remove_attention_map_saving()
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:
# sliced tokens attention map saving is not implemented
return
saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for identifier, module in tokens_cross_attention_modules:
key = "down" if identifier.startswith("down") else "up" if identifier.startswith("up") else "mid"
module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key)
)
def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None)
def do_controlnet_step(
self,
control_data,
sample: torch.Tensor,
timestep: torch.Tensor,
step_index: int,
total_step_count: int,
conditioning_data,
):
down_block_res_samples, mid_block_res_sample = None, None
# control_data should be type List[ControlNetData]
# this loop covers both ControlNet (one ControlNetData in list)
# and MultiControlNet (multiple ControlNetData in list)
for i, control_datum in enumerate(control_data):
control_mode = control_datum.control_mode
# soft_injection and cfg_injection are the two ControlNet control_mode booleans
# that are combined at higher level to make control_mode enum
# soft_injection determines whether to do per-layer re-weighting adjustment (if True)
# or default weighting (if False)
soft_injection = control_mode == "more_prompt" or control_mode == "more_control"
# cfg_injection = determines whether to apply ControlNet to only the conditional (if True)
# or the default both conditional and unconditional (if False)
cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
first_control_step = math.floor(control_datum.begin_step_percent * total_step_count)
last_control_step = math.ceil(control_datum.end_step_percent * total_step_count)
# only apply controlnet if current step is within the controlnet's begin/end step range
if step_index >= first_control_step and step_index <= last_control_step:
if cfg_injection:
sample_model_input = sample
else:
# expand the latents input to control model if doing classifier free guidance
# (which I think for now is always true, there is conditional elsewhere that stops execution if
# classifier_free_guidance is <= 1.0 ?)
sample_model_input = torch.cat([sample] * 2)
added_cond_kwargs = None
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
encoder_hidden_states = conditioning_data.text_embeddings.embeds
encoder_attention_mask = None
else:
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
dim=0,
),
}
(
encoder_hidden_states,
encoder_attention_mask,
) = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds,
conditioning_data.text_embeddings.embeds,
)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
controlnet_weight = control_datum.weight[step_index]
else:
# if controlnet has a single weight, use it for all steps
controlnet_weight = control_datum.weight
# controlnet(s) inference
down_samples, mid_sample = control_datum.model(
sample=sample_model_input,
timestep=timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_datum.image_tensor,
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
encoder_attention_mask=encoder_attention_mask,
added_cond_kwargs=added_cond_kwargs,
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
return_dict=False,
)
if cfg_injection:
# Inferred ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# prepend zeros for unconditional batch
down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples]
mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample])
if down_block_res_samples is None and mid_block_res_sample is None:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
else:
# add controlnet outputs together if have multiple controlnets
down_block_res_samples = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def do_unet_step(
self,
sample: torch.Tensor,
timestep: torch.Tensor,
conditioning_data, # TODO: type
step_index: int,
total_step_count: int,
**kwargs,
):
cross_attention_control_types_to_do = []
context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None:
percent_through = step_index / total_step_count
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(
percent_through
)
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
if wants_cross_attention_control:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_cross_attention_controlled_conditioning(
sample,
timestep,
conditioning_data,
cross_attention_control_types_to_do,
**kwargs,
)
elif self.sequential_guidance:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_standard_conditioning_sequentially(
sample,
timestep,
conditioning_data,
**kwargs,
)
else:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_standard_conditioning(
sample,
timestep,
conditioning_data,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
def do_latent_postprocessing(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
sigma,
step_index,
total_step_count,
) -> torch.Tensor:
if postprocessing_settings is not None:
percent_through = step_index / total_step_count
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
return latents
def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones(
(cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype
)
if cond.shape[1] < max_len:
conditioning_attention_mask = torch.cat(
[
conditioning_attention_mask,
torch.zeros((cond.shape[0], max_len - cond.shape[1]), device=cond.device, dtype=cond.dtype),
],
dim=1,
)
cond = torch.cat(
[
cond,
torch.zeros(
(cond.shape[0], max_len - cond.shape[1], cond.shape[2]),
device=cond.device,
dtype=cond.dtype,
),
],
dim=1,
)
if encoder_attention_mask is None:
encoder_attention_mask = conditioning_attention_mask
else:
encoder_attention_mask = torch.cat(
[
encoder_attention_mask,
conditioning_attention_mask,
]
)
return cond, encoder_attention_mask
encoder_attention_mask = None
if unconditioning.shape[1] != conditioning.shape[1]:
max_len = max(unconditioning.shape[1], conditioning.shape[1])
unconditioning, encoder_attention_mask = _pad_conditioning(unconditioning, max_len, encoder_attention_mask)
conditioning, encoder_attention_mask = _pad_conditioning(conditioning, max_len, encoder_attention_mask)
return torch.cat([unconditioning, conditioning]), encoder_attention_mask
# methods below are called from do_diffusion_step and should be considered private to this class.
def _apply_standard_conditioning(self, x, sigma, conditioning_data, **kwargs):
# fast batched path
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
added_cond_kwargs = None
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
dim=0,
),
}
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.text_embeddings.embeds
)
both_results = self.model_forward_callback(
x_twice,
sigma_twice,
both_conditionings,
encoder_attention_mask=encoder_attention_mask,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
unconditioned_next_x, conditioned_next_x = both_results.chunk(2)
return unconditioned_next_x, conditioned_next_x
def _apply_standard_conditioning_sequentially(
self,
x: torch.Tensor,
sigma,
conditioning_data,
**kwargs,
):
# low-memory sequential path
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
_uncond_down, _cond_down = down_block.chunk(2)
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids,
}
unconditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.unconditioned_embeddings.embeds,
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.text_embeddings.embeds,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
def _apply_cross_attention_controlled_conditioning(
self,
x: torch.Tensor,
sigma,
conditioning_data,
cross_attention_control_types_to_do,
**kwargs,
):
context: Context = self.cross_attention_control_context
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
_uncond_down, _cond_down = down_block.chunk(2)
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
cross_attn_processor_context = SwapCrossAttnContext(
modified_text_embeddings=context.arguments.edited_conditioning,
index_map=context.cross_attention_index_map,
mask=context.cross_attention_mask,
cross_attention_types_to_do=[],
)
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids,
}
# no cross attention for unconditioning (negative prompt)
unconditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.unconditioned_embeddings.embeds,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
# do requested cross attention types for conditioning (positive prompt)
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.text_embeddings.embeds,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
def _combine(self, unconditioned_next_x, conditioned_next_x, guidance_scale):
# to scale how much effect conditioning has, calculate the changes it does and then scale that
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
combined_next_x = unconditioned_next_x + scaled_delta
return combined_next_x
def apply_symmetry(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
percent_through: float,
) -> torch.Tensor:
# Reset our last percent through if this is our first step.
if percent_through == 0.0:
self.last_percent_through = 0.0
if postprocessing_settings is None:
return latents
# Check for out of bounds
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
if h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0):
h_symmetry_time_pct = None
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
if v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0):
v_symmetry_time_pct = None
dev = latents.device.type
latents.to(device="cpu")
if (
h_symmetry_time_pct != None
and self.last_percent_through < h_symmetry_time_pct
and percent_through >= h_symmetry_time_pct
):
# Horizontal symmetry occurs on the 3rd dimension of the latent
width = latents.shape[3]
x_flipped = torch.flip(latents, dims=[3])
latents = torch.cat(
[
latents[:, :, :, 0 : int(width / 2)],
x_flipped[:, :, :, int(width / 2) : int(width)],
],
dim=3,
)
if (
v_symmetry_time_pct != None
and self.last_percent_through < v_symmetry_time_pct
and percent_through >= v_symmetry_time_pct
):
# Vertical symmetry occurs on the 2nd dimension of the latent
height = latents.shape[2]
y_flipped = torch.flip(latents, dims=[2])
latents = torch.cat(
[
latents[:, :, 0 : int(height / 2)],
y_flipped[:, :, int(height / 2) : int(height)],
],
dim=2,
)
self.last_percent_through = percent_through
return latents.to(device=dev)
# todo: make this work
@classmethod
def apply_conjunction(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2) # aka sigmas
deltas = None
uncond_latents = None
weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
# below is fugly omg
conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = math.ceil(len(conditionings) / 2)
deltas = None
for chunk_index in range(chunk_count):
offset = chunk_index * 2
chunk_size = min(2, len(conditionings) - offset)
if chunk_size == 1:
c_in = conditionings[offset]
latents_a = forward_func(x_in[:-1], t_in[:-1], c_in)
latents_b = None
else:
c_in = torch.cat(conditionings[offset : offset + 2])
latents_a, latents_b = forward_func(x_in, t_in, c_in).chunk(2)
# first chunk is guaranteed to be 2 entries: uncond_latents + first conditioining
if chunk_index == 0:
uncond_latents = latents_a
deltas = latents_b - uncond_latents
else:
deltas = torch.cat((deltas, latents_a - uncond_latents))
if latents_b is not None:
deltas = torch.cat((deltas, latents_b - uncond_latents))
# merge the weighted deltas together into a single merged delta
per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
normalize = False
if normalize:
per_delta_weights /= torch.sum(per_delta_weights)
reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)
# assert(0 == len(torch.nonzero(old_return_value - (uncond_latents + deltas_merged * cond_scale))))
return uncond_latents + deltas_merged * global_guidance_scale