mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-08 19:25:19 -05:00
* add control net to useRecallParams * got recall controlnets working * fix metadata viewer controlnet * fix type errors * fix controlnet metadata viewer * add ip adapter to metadata * added ip adapter to recall parameters * got ip adapter recall working, still need to fix type errors * fix type issues * clean up logs * python formatting * cleanup * fix(ui): only store `image_name` as ip adapter image * fix(ui): use nullish coalescing operator for numbers Need to use the nullish coalescing operator `??` instead of false-y coalescing operator `||` when the value being check is a number. This prevents unintended coalescing when the value is zero and therefore false-y. * feat(ui): fall back on default values for ip adapter metadata * fix(ui): remove unused schema * feat(ui): re-use existing schemas in metadata schema * fix(ui): do not disable invocationCache --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
359 lines
9.0 KiB
TypeScript
359 lines
9.0 KiB
TypeScript
import { logger } from 'app/logging/logger';
|
|
import { RootState } from 'app/store/store';
|
|
import { NonNullableGraph } from 'features/nodes/types/types';
|
|
import {
|
|
DenoiseLatentsInvocation,
|
|
ONNXTextToLatentsInvocation,
|
|
} from 'services/api/types';
|
|
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
|
import { addIPAdapterToLinearGraph } from './addIPAdapterToLinearGraph';
|
|
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
|
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
|
import { addSaveImageNode } from './addSaveImageNode';
|
|
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
|
import { addVAEToGraph } from './addVAEToGraph';
|
|
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
|
import {
|
|
CANVAS_OUTPUT,
|
|
CANVAS_TEXT_TO_IMAGE_GRAPH,
|
|
CLIP_SKIP,
|
|
DENOISE_LATENTS,
|
|
LATENTS_TO_IMAGE,
|
|
MAIN_MODEL_LOADER,
|
|
METADATA_ACCUMULATOR,
|
|
NEGATIVE_CONDITIONING,
|
|
NOISE,
|
|
ONNX_MODEL_LOADER,
|
|
POSITIVE_CONDITIONING,
|
|
SEAMLESS,
|
|
} from './constants';
|
|
|
|
/**
|
|
* Builds the Canvas tab's Text to Image graph.
|
|
*/
|
|
export const buildCanvasTextToImageGraph = (
|
|
state: RootState
|
|
): NonNullableGraph => {
|
|
const log = logger('nodes');
|
|
const {
|
|
positivePrompt,
|
|
negativePrompt,
|
|
model,
|
|
cfgScale: cfg_scale,
|
|
scheduler,
|
|
seed,
|
|
steps,
|
|
vaePrecision,
|
|
clipSkip,
|
|
shouldUseCpuNoise,
|
|
seamlessXAxis,
|
|
seamlessYAxis,
|
|
} = state.generation;
|
|
|
|
// The bounding box determines width and height, not the width and height params
|
|
const { width, height } = state.canvas.boundingBoxDimensions;
|
|
|
|
const { scaledBoundingBoxDimensions, boundingBoxScaleMethod } = state.canvas;
|
|
|
|
const fp32 = vaePrecision === 'fp32';
|
|
const is_intermediate = true;
|
|
const isUsingScaledDimensions = ['auto', 'manual'].includes(
|
|
boundingBoxScaleMethod
|
|
);
|
|
|
|
if (!model) {
|
|
log.error('No model found in state');
|
|
throw new Error('No model found in state');
|
|
}
|
|
|
|
const use_cpu = shouldUseCpuNoise;
|
|
|
|
const isUsingOnnxModel = model.model_type === 'onnx';
|
|
|
|
let modelLoaderNodeId = isUsingOnnxModel
|
|
? ONNX_MODEL_LOADER
|
|
: MAIN_MODEL_LOADER;
|
|
|
|
const modelLoaderNodeType = isUsingOnnxModel
|
|
? 'onnx_model_loader'
|
|
: 'main_model_loader';
|
|
|
|
const t2lNode: DenoiseLatentsInvocation | ONNXTextToLatentsInvocation =
|
|
isUsingOnnxModel
|
|
? {
|
|
type: 't2l_onnx',
|
|
id: DENOISE_LATENTS,
|
|
is_intermediate,
|
|
cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
}
|
|
: {
|
|
type: 'denoise_latents',
|
|
id: DENOISE_LATENTS,
|
|
is_intermediate,
|
|
cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
denoising_start: 0,
|
|
denoising_end: 1,
|
|
};
|
|
|
|
/**
|
|
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
|
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
|
* ids.
|
|
*
|
|
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
|
* the `fit` param. These are added to the graph at the end.
|
|
*/
|
|
|
|
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
|
// TODO: Actually create the graph correctly for ONNX
|
|
const graph: NonNullableGraph = {
|
|
id: CANVAS_TEXT_TO_IMAGE_GRAPH,
|
|
nodes: {
|
|
[modelLoaderNodeId]: {
|
|
type: modelLoaderNodeType,
|
|
id: modelLoaderNodeId,
|
|
is_intermediate,
|
|
model,
|
|
},
|
|
[CLIP_SKIP]: {
|
|
type: 'clip_skip',
|
|
id: CLIP_SKIP,
|
|
is_intermediate,
|
|
skipped_layers: clipSkip,
|
|
},
|
|
[POSITIVE_CONDITIONING]: {
|
|
type: isUsingOnnxModel ? 'prompt_onnx' : 'compel',
|
|
id: POSITIVE_CONDITIONING,
|
|
is_intermediate,
|
|
prompt: positivePrompt,
|
|
},
|
|
[NEGATIVE_CONDITIONING]: {
|
|
type: isUsingOnnxModel ? 'prompt_onnx' : 'compel',
|
|
id: NEGATIVE_CONDITIONING,
|
|
is_intermediate,
|
|
prompt: negativePrompt,
|
|
},
|
|
[NOISE]: {
|
|
type: 'noise',
|
|
id: NOISE,
|
|
is_intermediate,
|
|
seed,
|
|
width: !isUsingScaledDimensions
|
|
? width
|
|
: scaledBoundingBoxDimensions.width,
|
|
height: !isUsingScaledDimensions
|
|
? height
|
|
: scaledBoundingBoxDimensions.height,
|
|
use_cpu,
|
|
},
|
|
[t2lNode.id]: t2lNode,
|
|
},
|
|
edges: [
|
|
// Connect Model Loader to UNet & CLIP Skip
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'unet',
|
|
},
|
|
destination: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'unet',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
// Connect CLIP Skip to Conditioning
|
|
{
|
|
source: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: CLIP_SKIP,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
// Connect everything to Denoise Latents
|
|
{
|
|
source: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'positive_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'negative_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NOISE,
|
|
field: 'noise',
|
|
},
|
|
destination: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'noise',
|
|
},
|
|
},
|
|
],
|
|
};
|
|
|
|
// Decode Latents To Image & Handle Scaled Before Processing
|
|
if (isUsingScaledDimensions) {
|
|
graph.nodes[LATENTS_TO_IMAGE] = {
|
|
id: LATENTS_TO_IMAGE,
|
|
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
|
|
is_intermediate,
|
|
fp32,
|
|
};
|
|
|
|
graph.nodes[CANVAS_OUTPUT] = {
|
|
id: CANVAS_OUTPUT,
|
|
type: 'img_resize',
|
|
is_intermediate,
|
|
width: width,
|
|
height: height,
|
|
};
|
|
|
|
graph.edges.push(
|
|
{
|
|
source: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'image',
|
|
},
|
|
destination: {
|
|
node_id: CANVAS_OUTPUT,
|
|
field: 'image',
|
|
},
|
|
}
|
|
);
|
|
} else {
|
|
graph.nodes[CANVAS_OUTPUT] = {
|
|
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
|
|
id: CANVAS_OUTPUT,
|
|
is_intermediate,
|
|
fp32,
|
|
};
|
|
|
|
graph.edges.push({
|
|
source: {
|
|
node_id: DENOISE_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: CANVAS_OUTPUT,
|
|
field: 'latents',
|
|
},
|
|
});
|
|
}
|
|
|
|
// add metadata accumulator, which is only mostly populated - some fields are added later
|
|
graph.nodes[METADATA_ACCUMULATOR] = {
|
|
id: METADATA_ACCUMULATOR,
|
|
type: 'metadata_accumulator',
|
|
generation_mode: 'txt2img',
|
|
cfg_scale,
|
|
width: !isUsingScaledDimensions ? width : scaledBoundingBoxDimensions.width,
|
|
height: !isUsingScaledDimensions
|
|
? height
|
|
: scaledBoundingBoxDimensions.height,
|
|
positive_prompt: positivePrompt,
|
|
negative_prompt: negativePrompt,
|
|
model,
|
|
seed,
|
|
steps,
|
|
rand_device: use_cpu ? 'cpu' : 'cuda',
|
|
scheduler,
|
|
vae: undefined, // option; set in addVAEToGraph
|
|
controlnets: [], // populated in addControlNetToLinearGraph
|
|
loras: [], // populated in addLoRAsToGraph
|
|
ipAdapters: [], // populated in addIPAdapterToLinearGraph
|
|
clip_skip: clipSkip,
|
|
};
|
|
|
|
graph.edges.push({
|
|
source: {
|
|
node_id: METADATA_ACCUMULATOR,
|
|
field: 'metadata',
|
|
},
|
|
destination: {
|
|
node_id: CANVAS_OUTPUT,
|
|
field: 'metadata',
|
|
},
|
|
});
|
|
|
|
// Add Seamless To Graph
|
|
if (seamlessXAxis || seamlessYAxis) {
|
|
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
|
modelLoaderNodeId = SEAMLESS;
|
|
}
|
|
|
|
// optionally add custom VAE
|
|
addVAEToGraph(state, graph, modelLoaderNodeId);
|
|
|
|
// add LoRA support
|
|
addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
|
|
|
|
// add controlnet, mutating `graph`
|
|
addControlNetToLinearGraph(state, graph, DENOISE_LATENTS);
|
|
|
|
// Add IP Adapter
|
|
addIPAdapterToLinearGraph(state, graph, DENOISE_LATENTS);
|
|
|
|
// NSFW & watermark - must be last thing added to graph
|
|
if (state.system.shouldUseNSFWChecker) {
|
|
// must add before watermarker!
|
|
addNSFWCheckerToGraph(state, graph, CANVAS_OUTPUT);
|
|
}
|
|
|
|
if (state.system.shouldUseWatermarker) {
|
|
// must add after nsfw checker!
|
|
addWatermarkerToGraph(state, graph, CANVAS_OUTPUT);
|
|
}
|
|
|
|
addSaveImageNode(state, graph);
|
|
|
|
return graph;
|
|
};
|