Files
InvokeAI/invokeai/backend/image_util/depth_anything/depth_anything_pipeline.py
psychedelicious ac9950bdbb feat(nodes): add DepthAnythingDepthEstimationInvocation
Similar to the existing node, but without any resizing and with a revised model loading API.
2024-09-11 08:12:48 -04:00

42 lines
1.5 KiB
Python

import pathlib
from typing import Optional
import torch
from PIL import Image
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)
@classmethod
def load_model(cls, model_path: pathlib.Path):
"""Load the model from the given path and return a DepthAnythingPipeline instance."""
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return cls(depth_anything_pipeline)