mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-13 04:05:36 -05:00
391 lines
10 KiB
TypeScript
391 lines
10 KiB
TypeScript
import { logger } from 'app/logging/logger';
|
|
import type { RootState } from 'app/store/store';
|
|
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
|
import {
|
|
type ImageResizeInvocation,
|
|
type ImageToLatentsInvocation,
|
|
isNonRefinerMainModelConfig,
|
|
type NonNullableGraph,
|
|
} from 'services/api/types';
|
|
|
|
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
|
import { addIPAdapterToLinearGraph } from './addIPAdapterToLinearGraph';
|
|
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
|
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
|
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
|
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
|
import { addT2IAdaptersToLinearGraph } from './addT2IAdapterToLinearGraph';
|
|
import { addVAEToGraph } from './addVAEToGraph';
|
|
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
|
import {
|
|
IMAGE_TO_LATENTS,
|
|
LATENTS_TO_IMAGE,
|
|
NEGATIVE_CONDITIONING,
|
|
NOISE,
|
|
POSITIVE_CONDITIONING,
|
|
RESIZE,
|
|
SDXL_DENOISE_LATENTS,
|
|
SDXL_IMAGE_TO_IMAGE_GRAPH,
|
|
SDXL_MODEL_LOADER,
|
|
SDXL_REFINER_SEAMLESS,
|
|
SEAMLESS,
|
|
} from './constants';
|
|
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from './graphBuilderUtils';
|
|
import { addCoreMetadataNode, getModelMetadataField } from './metadata';
|
|
|
|
/**
|
|
* Builds the Image to Image tab graph.
|
|
*/
|
|
export const buildLinearSDXLImageToImageGraph = async (state: RootState): Promise<NonNullableGraph> => {
|
|
const log = logger('nodes');
|
|
const {
|
|
model,
|
|
cfgScale: cfg_scale,
|
|
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
|
scheduler,
|
|
seed,
|
|
steps,
|
|
initialImage,
|
|
shouldFitToWidthHeight,
|
|
shouldUseCpuNoise,
|
|
vaePrecision,
|
|
seamlessXAxis,
|
|
seamlessYAxis,
|
|
img2imgStrength: strength,
|
|
} = state.generation;
|
|
const { positivePrompt, negativePrompt } = state.regionalPrompts.present.baseLayer;
|
|
const { width, height } = state.regionalPrompts.present.size;
|
|
|
|
const { refinerModel, refinerStart } = state.sdxl;
|
|
|
|
/**
|
|
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
|
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
|
* ids.
|
|
*
|
|
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
|
* the `fit` param. These are added to the graph at the end.
|
|
*/
|
|
|
|
if (!initialImage) {
|
|
log.error('No initial image found in state');
|
|
throw new Error('No initial image found in state');
|
|
}
|
|
|
|
if (!model) {
|
|
log.error('No model found in state');
|
|
throw new Error('No model found in state');
|
|
}
|
|
|
|
const fp32 = vaePrecision === 'fp32';
|
|
const is_intermediate = true;
|
|
|
|
// Model Loader ID
|
|
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
|
|
|
const use_cpu = shouldUseCpuNoise;
|
|
|
|
// Construct Style Prompt
|
|
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
|
|
|
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
|
const graph: NonNullableGraph = {
|
|
id: SDXL_IMAGE_TO_IMAGE_GRAPH,
|
|
nodes: {
|
|
[modelLoaderNodeId]: {
|
|
type: 'sdxl_model_loader',
|
|
id: modelLoaderNodeId,
|
|
model,
|
|
is_intermediate,
|
|
},
|
|
[POSITIVE_CONDITIONING]: {
|
|
type: 'sdxl_compel_prompt',
|
|
id: POSITIVE_CONDITIONING,
|
|
prompt: positivePrompt,
|
|
style: positiveStylePrompt,
|
|
is_intermediate,
|
|
},
|
|
[NEGATIVE_CONDITIONING]: {
|
|
type: 'sdxl_compel_prompt',
|
|
id: NEGATIVE_CONDITIONING,
|
|
prompt: negativePrompt,
|
|
style: negativeStylePrompt,
|
|
is_intermediate,
|
|
},
|
|
[NOISE]: {
|
|
type: 'noise',
|
|
id: NOISE,
|
|
use_cpu,
|
|
seed,
|
|
is_intermediate,
|
|
},
|
|
[LATENTS_TO_IMAGE]: {
|
|
type: 'l2i',
|
|
id: LATENTS_TO_IMAGE,
|
|
fp32,
|
|
is_intermediate: getIsIntermediate(state),
|
|
board: getBoardField(state),
|
|
},
|
|
[SDXL_DENOISE_LATENTS]: {
|
|
type: 'denoise_latents',
|
|
id: SDXL_DENOISE_LATENTS,
|
|
cfg_scale,
|
|
cfg_rescale_multiplier,
|
|
scheduler,
|
|
steps,
|
|
denoising_start: refinerModel ? Math.min(refinerStart, 1 - strength) : 1 - strength,
|
|
denoising_end: refinerModel ? refinerStart : 1,
|
|
is_intermediate,
|
|
},
|
|
[IMAGE_TO_LATENTS]: {
|
|
type: 'i2l',
|
|
id: IMAGE_TO_LATENTS,
|
|
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
|
// image: {
|
|
// image_name: initialImage.image_name,
|
|
// },
|
|
fp32,
|
|
is_intermediate,
|
|
use_cache: false,
|
|
},
|
|
},
|
|
edges: [
|
|
// Connect Model Loader to UNet, CLIP & VAE
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'unet',
|
|
},
|
|
destination: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'unet',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'clip2',
|
|
},
|
|
destination: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'clip2',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: modelLoaderNodeId,
|
|
field: 'clip2',
|
|
},
|
|
destination: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'clip2',
|
|
},
|
|
},
|
|
// Connect everything to Denoise Latents
|
|
{
|
|
source: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'positive_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'negative_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NOISE,
|
|
field: 'noise',
|
|
},
|
|
destination: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'noise',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: IMAGE_TO_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
// Decode Denoised Latents To Image
|
|
{
|
|
source: {
|
|
node_id: SDXL_DENOISE_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
],
|
|
};
|
|
|
|
// handle `fit`
|
|
if (shouldFitToWidthHeight && (initialImage.width !== width || initialImage.height !== height)) {
|
|
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
|
|
|
|
// Create a resize node, explicitly setting its image
|
|
const resizeNode: ImageResizeInvocation = {
|
|
id: RESIZE,
|
|
type: 'img_resize',
|
|
image: {
|
|
image_name: initialImage.imageName,
|
|
},
|
|
is_intermediate: true,
|
|
width,
|
|
height,
|
|
};
|
|
|
|
graph.nodes[RESIZE] = resizeNode;
|
|
|
|
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'image' },
|
|
destination: {
|
|
node_id: IMAGE_TO_LATENTS,
|
|
field: 'image',
|
|
},
|
|
});
|
|
|
|
// The `RESIZE` node also passes its width and height to `NOISE`
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'width' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'width',
|
|
},
|
|
});
|
|
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'height' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'height',
|
|
},
|
|
});
|
|
} else {
|
|
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
|
|
(graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image = {
|
|
image_name: initialImage.imageName,
|
|
};
|
|
|
|
// Pass the image's dimensions to the `NOISE` node
|
|
graph.edges.push({
|
|
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'width',
|
|
},
|
|
});
|
|
graph.edges.push({
|
|
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'height',
|
|
},
|
|
});
|
|
}
|
|
|
|
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
|
|
|
addCoreMetadataNode(
|
|
graph,
|
|
{
|
|
generation_mode: 'sdxl_img2img',
|
|
cfg_scale,
|
|
cfg_rescale_multiplier,
|
|
height,
|
|
width,
|
|
positive_prompt: positivePrompt,
|
|
negative_prompt: negativePrompt,
|
|
model: getModelMetadataField(modelConfig),
|
|
seed,
|
|
steps,
|
|
rand_device: use_cpu ? 'cpu' : 'cuda',
|
|
scheduler,
|
|
strength,
|
|
init_image: initialImage.imageName,
|
|
positive_style_prompt: positiveStylePrompt,
|
|
negative_style_prompt: negativeStylePrompt,
|
|
},
|
|
LATENTS_TO_IMAGE
|
|
);
|
|
|
|
// Add Seamless To Graph
|
|
if (seamlessXAxis || seamlessYAxis) {
|
|
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
|
modelLoaderNodeId = SEAMLESS;
|
|
}
|
|
|
|
// Add Refiner if enabled
|
|
if (refinerModel) {
|
|
await addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
|
if (seamlessXAxis || seamlessYAxis) {
|
|
modelLoaderNodeId = SDXL_REFINER_SEAMLESS;
|
|
}
|
|
}
|
|
|
|
// optionally add custom VAE
|
|
await addVAEToGraph(state, graph, modelLoaderNodeId);
|
|
|
|
// Add LoRA Support
|
|
await addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
|
|
|
// add controlnet, mutating `graph`
|
|
await addControlNetToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
|
|
|
// Add IP Adapter
|
|
await addIPAdapterToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
|
|
|
await addT2IAdaptersToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
|
|
|
|
// NSFW & watermark - must be last thing added to graph
|
|
if (state.system.shouldUseNSFWChecker) {
|
|
// must add before watermarker!
|
|
addNSFWCheckerToGraph(state, graph);
|
|
}
|
|
|
|
if (state.system.shouldUseWatermarker) {
|
|
// must add after nsfw checker!
|
|
addWatermarkerToGraph(state, graph);
|
|
}
|
|
|
|
return graph;
|
|
};
|