Files
InvokeAI/invokeai/backend/flux/controlnet/state_dict_utils.py

296 lines
12 KiB
Python

from typing import Any, Dict
import torch
from invokeai.backend.flux.model import FluxParams
def is_state_dict_xlabs_controlnet(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an XLabs ControlNet model?
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely an XLabs ControlNet model.
expected_keys = {
"controlnet_blocks.0.bias",
"controlnet_blocks.0.weight",
"input_hint_block.0.bias",
"input_hint_block.0.weight",
"pos_embed_input.bias",
"pos_embed_input.weight",
}
if expected_keys.issubset(sd.keys()):
return True
return False
def is_state_dict_instantx_controlnet(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an InstantX ControlNet model?
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely an InstantX ControlNet model.
expected_keys = {
"controlnet_blocks.0.bias",
"controlnet_blocks.0.weight",
"controlnet_x_embedder.bias",
"controlnet_x_embedder.weight",
}
if expected_keys.issubset(sd.keys()):
return True
return False
def _fuse_weights(*t: torch.Tensor) -> torch.Tensor:
"""Fuse weights along dimension 0.
Used to fuse q, k, v attention weights into a single qkv tensor when converting from diffusers to BFL format.
"""
# TODO(ryand): Double check dim=0 is correct.
return torch.cat(t, dim=0)
def _convert_flux_double_block_sd_from_diffusers_to_bfl_format(
sd: Dict[str, torch.Tensor], double_block_index: int
) -> Dict[str, torch.Tensor]:
"""Convert the state dict for a double block from diffusers format to BFL format."""
to_prefix = f"double_blocks.{double_block_index}"
from_prefix = f"transformer_blocks.{double_block_index}"
new_sd: dict[str, torch.Tensor] = {}
# Check one key to determine if this block exists.
if f"{from_prefix}.attn.add_q_proj.bias" not in sd:
return new_sd
# txt_attn.qkv
new_sd[f"{to_prefix}.txt_attn.qkv.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.add_q_proj.bias"),
sd.pop(f"{from_prefix}.attn.add_k_proj.bias"),
sd.pop(f"{from_prefix}.attn.add_v_proj.bias"),
)
new_sd[f"{to_prefix}.txt_attn.qkv.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.add_q_proj.weight"),
sd.pop(f"{from_prefix}.attn.add_k_proj.weight"),
sd.pop(f"{from_prefix}.attn.add_v_proj.weight"),
)
# img_attn.qkv
new_sd[f"{to_prefix}.img_attn.qkv.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.bias"),
sd.pop(f"{from_prefix}.attn.to_k.bias"),
sd.pop(f"{from_prefix}.attn.to_v.bias"),
)
new_sd[f"{to_prefix}.img_attn.qkv.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.weight"),
sd.pop(f"{from_prefix}.attn.to_k.weight"),
sd.pop(f"{from_prefix}.attn.to_v.weight"),
)
# Handle basic 1-to-1 key conversions.
key_map = {
# img_attn
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
# img_mlp
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
# img_mod
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
# txt_attn
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
# txt_mlp
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
# txt_mod
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
}
for from_key, to_key in key_map.items():
new_sd[f"{to_prefix}.{to_key}"] = sd.pop(f"{from_prefix}.{from_key}")
return new_sd
def _convert_flux_single_block_sd_from_diffusers_to_bfl_format(
sd: Dict[str, torch.Tensor], single_block_index: int
) -> Dict[str, torch.Tensor]:
"""Convert the state dict for a single block from diffusers format to BFL format."""
to_prefix = f"single_blocks.{single_block_index}"
from_prefix = f"single_transformer_blocks.{single_block_index}"
new_sd: dict[str, torch.Tensor] = {}
# Check one key to determine if this block exists.
if f"{from_prefix}.attn.to_q.bias" not in sd:
return new_sd
# linear1 (qkv)
new_sd[f"{to_prefix}.linear1.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.bias"),
sd.pop(f"{from_prefix}.attn.to_k.bias"),
sd.pop(f"{from_prefix}.attn.to_v.bias"),
sd.pop(f"{from_prefix}.proj_mlp.bias"),
)
new_sd[f"{to_prefix}.linear1.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.weight"),
sd.pop(f"{from_prefix}.attn.to_k.weight"),
sd.pop(f"{from_prefix}.attn.to_v.weight"),
sd.pop(f"{from_prefix}.proj_mlp.weight"),
)
# Handle basic 1-to-1 key conversions.
key_map = {
# linear2
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
# modulation
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
# norm
"attn.norm_k.weight": "norm.key_norm.scale",
"attn.norm_q.weight": "norm.query_norm.scale",
}
for from_key, to_key in key_map.items():
new_sd[f"{to_prefix}.{to_key}"] = sd.pop(f"{from_prefix}.{from_key}")
return new_sd
def convert_diffusers_instantx_state_dict_to_bfl_format(sd: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert an InstantX ControlNet state dict to the format that can be loaded by our internal
InstantXControlNetFlux model.
The original InstantX ControlNet model was developed to be used in diffusers. We have ported the original
implementation to InstantXControlNetFlux to make it compatible with BFL-style models. This function converts the
original state dict to the format expected by InstantXControlNetFlux.
"""
# Shallow copy sd so that we can pop keys from it without modifying the original.
sd = sd.copy()
new_sd: dict[str, torch.Tensor] = {}
# Handle basic 1-to-1 key conversions.
basic_key_map = {
# Base model keys.
# ----------------
# txt_in keys.
"context_embedder.bias": "txt_in.bias",
"context_embedder.weight": "txt_in.weight",
# guidance_in MLPEmbedder keys.
"time_text_embed.guidance_embedder.linear_1.bias": "guidance_in.in_layer.bias",
"time_text_embed.guidance_embedder.linear_1.weight": "guidance_in.in_layer.weight",
"time_text_embed.guidance_embedder.linear_2.bias": "guidance_in.out_layer.bias",
"time_text_embed.guidance_embedder.linear_2.weight": "guidance_in.out_layer.weight",
# vector_in MLPEmbedder keys.
"time_text_embed.text_embedder.linear_1.bias": "vector_in.in_layer.bias",
"time_text_embed.text_embedder.linear_1.weight": "vector_in.in_layer.weight",
"time_text_embed.text_embedder.linear_2.bias": "vector_in.out_layer.bias",
"time_text_embed.text_embedder.linear_2.weight": "vector_in.out_layer.weight",
# time_in MLPEmbedder keys.
"time_text_embed.timestep_embedder.linear_1.bias": "time_in.in_layer.bias",
"time_text_embed.timestep_embedder.linear_1.weight": "time_in.in_layer.weight",
"time_text_embed.timestep_embedder.linear_2.bias": "time_in.out_layer.bias",
"time_text_embed.timestep_embedder.linear_2.weight": "time_in.out_layer.weight",
# img_in keys.
"x_embedder.bias": "img_in.bias",
"x_embedder.weight": "img_in.weight",
}
for old_key, new_key in basic_key_map.items():
v = sd.pop(old_key, None)
if v is not None:
new_sd[new_key] = v
# Handle the double_blocks.
block_index = 0
while True:
converted_double_block_sd = _convert_flux_double_block_sd_from_diffusers_to_bfl_format(sd, block_index)
if len(converted_double_block_sd) == 0:
break
new_sd.update(converted_double_block_sd)
block_index += 1
# Handle the single_blocks.
block_index = 0
while True:
converted_singe_block_sd = _convert_flux_single_block_sd_from_diffusers_to_bfl_format(sd, block_index)
if len(converted_singe_block_sd) == 0:
break
new_sd.update(converted_singe_block_sd)
block_index += 1
# Transfer controlnet keys as-is.
for k in list(sd.keys()):
if k.startswith("controlnet_"):
new_sd[k] = sd.pop(k)
# Assert that all keys have been handled.
assert len(sd) == 0
return new_sd
def infer_flux_params_from_state_dict(sd: Dict[str, torch.Tensor]) -> FluxParams:
"""Infer the FluxParams from the shape of a FLUX state dict. When a model is distributed in diffusers format, this
information is all contained in the config.json file that accompanies the model. However, being apple to infer the
params from the state dict enables us to load models (e.g. an InstantX ControlNet) from a single weight file.
"""
hidden_size = sd["img_in.weight"].shape[0]
mlp_hidden_dim = sd["double_blocks.0.img_mlp.0.weight"].shape[0]
# mlp_ratio is a float, but we treat it as an int here to avoid having to think about possible float precision
# issues. In practice, mlp_ratio is usually 4.
mlp_ratio = mlp_hidden_dim // hidden_size
head_dim = sd["double_blocks.0.img_attn.norm.query_norm.scale"].shape[0]
num_heads = hidden_size // head_dim
# Count the number of double blocks.
double_block_index = 0
while f"double_blocks.{double_block_index}.img_attn.qkv.weight" in sd:
double_block_index += 1
# Count the number of single blocks.
single_block_index = 0
while f"single_blocks.{single_block_index}.linear1.weight" in sd:
single_block_index += 1
return FluxParams(
in_channels=sd["img_in.weight"].shape[1],
vec_in_dim=sd["vector_in.in_layer.weight"].shape[1],
context_in_dim=sd["txt_in.weight"].shape[1],
hidden_size=hidden_size,
mlp_ratio=mlp_ratio,
num_heads=num_heads,
depth=double_block_index,
depth_single_blocks=single_block_index,
# axes_dim cannot be inferred from the state dict. The hard-coded value is correct for dev/schnell models.
axes_dim=[16, 56, 56],
# theta cannot be inferred from the state dict. The hard-coded value is correct for dev/schnell models.
theta=10_000,
qkv_bias="double_blocks.0.img_attn.qkv.bias" in sd,
guidance_embed="guidance_in.in_layer.weight" in sd,
)
def infer_instantx_num_control_modes_from_state_dict(sd: Dict[str, torch.Tensor]) -> int | None:
"""Infer the number of ControlNet Union modes from the shape of a InstantX ControlNet state dict.
Returns None if the model is not a ControlNet Union model. Otherwise returns the number of modes.
"""
mode_embedder_key = "controlnet_mode_embedder.weight"
if mode_embedder_key not in sd:
return None
return sd[mode_embedder_key].shape[0]