Files
InvokeAI/invokeai/backend/image_util/lineart.py

229 lines
7.4 KiB
Python

"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import pathlib
import cv2
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
normalize_image_channel_count,
np_to_pil,
pil_to_np,
resize_image_to_resolution,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), nn.InstanceNorm2d(64), nn.ReLU(inplace=True)]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features * 2
for _ in range(2):
model1 += [
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features * 2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features // 2
for _ in range(2):
model3 += [
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features // 2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartProcessor:
"""Processor for lineart detection."""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "sk_model.pth")
self.model = Generator(3, 1, 3)
self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
self.model.eval()
coarse_model_path = hf_hub_download("lllyasviel/Annotators", "sk_model2.pth")
self.model_coarse = Generator(3, 1, 3)
self.model_coarse.load_state_dict(torch.load(coarse_model_path, map_location=torch.device("cpu")))
self.model_coarse.eval()
def to(self, device: torch.device):
self.model.to(device)
self.model_coarse.to(device)
return self
def run(
self, input_image: Image.Image, coarse: bool = False, detect_resolution: int = 512, image_resolution: int = 512
) -> Image.Image:
"""Processes an image to detect lineart.
Args:
input_image: The input image.
coarse: Whether to use the coarse model.
detect_resolution: The resolution to fit the image to before edge detection.
image_resolution: The resolution of the output image.
Returns:
The detected lineart.
"""
device = get_effective_device(self.model)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
model = self.model_coarse if coarse else self.model
assert np_image.ndim == 3
image = np_image
with torch.no_grad():
image = torch.from_numpy(image).float().to(device)
image = image / 255.0
image = rearrange(image, "h w c -> 1 c h w")
line = model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
detected_map = line
detected_map = normalize_image_channel_count(detected_map)
img = resize_image_to_resolution(np_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = 255 - detected_map
return np_to_pil(detected_map)
class LineartEdgeDetector:
"""Simple wrapper around the fine and coarse lineart models for detecting edges in an image."""
hf_repo_id = "lllyasviel/Annotators"
hf_filename_fine = "sk_model.pth"
hf_filename_coarse = "sk_model2.pth"
@classmethod
def get_model_url(cls, coarse: bool = False) -> str:
"""Get the URL to download the model from the Hugging Face Hub."""
if coarse:
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename_coarse)
else:
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename_fine)
@classmethod
def load_model(cls, model_path: pathlib.Path) -> Generator:
"""Load the model from a file."""
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location="cpu"))
model.float().eval()
return model
def __init__(self, model: Generator) -> None:
self.model = model
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, image: Image.Image) -> Image.Image:
"""Detects edges in the input image with the selected lineart model.
Args:
input: The input image.
coarse: Whether to use the coarse model.
Returns:
The detected edges.
"""
device = get_effective_device(self.model)
np_image = pil_to_np(image)
with torch.no_grad():
np_image = torch.from_numpy(np_image).float().to(device)
np_image = np_image / 255.0
np_image = rearrange(np_image, "h w c -> 1 c h w")
line = self.model(np_image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
detected_map = 255 - line
# The lineart model often outputs a lot of almost-black noise. SD1.5 ControlNets seem to be OK with this, but
# SDXL ControlNets are not - they need a cleaner map. 12 was experimentally determined to be a good threshold,
# eliminating all the noise while keeping the actual edges. Other approaches to thresholding may be better,
# for example stretching the contrast or removing noise.
detected_map[detected_map < 12] = 0
output = np_to_pil(detected_map)
return output