Files
InvokeAI/invokeai/backend/quantization/scripts/load_flux_model_bnb_nf4.py

97 lines
3.7 KiB
Python

import time
from contextlib import contextmanager
from pathlib import Path
import accelerate
import torch
from safetensors.torch import load_file, save_file
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.util import params
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
@contextmanager
def log_time(name: str):
"""Helper context manager to log the time taken by a block of code."""
start = time.time()
try:
yield None
finally:
end = time.time()
print(f"'{name}' took {end - start:.4f} secs")
def main():
"""A script for quantizing a FLUX transformer model using the bitsandbytes NF4 quantization method.
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
etc.) are hardcoded and would need to be modified for other use cases.
"""
model_path = Path(
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
)
# inference_dtype = torch.bfloat16
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
p = params["flux-schnell"]
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
model = Flux(p)
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_nf4_path = model_path.parent / "bnb_nf4.safetensors"
if model_nf4_path.exists():
# The quantized model already exists, load it and return it.
print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
# Replace the linear layers with NF4 quantized linear layers (still on the meta device).
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
)
with log_time("Load state dict into model"):
state_dict = load_file(model_nf4_path)
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda"):
model = model.to("cuda")
print(f"Successfully loaded pre-quantized model from '{model_nf4_path}'.")
else:
# The quantized model does not exist, quantize the model and save it.
print(f"No pre-quantized model found at '{model_nf4_path}'. Quantizing the model...")
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
)
with log_time("Load state dict into model"):
state_dict = load_file(model_path)
# TODO(ryand): Cast the state_dict to the appropriate dtype?
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda and quantize"):
model = model.to("cuda")
with log_time("Save quantized model"):
model_nf4_path.parent.mkdir(parents=True, exist_ok=True)
save_file(model.state_dict(), model_nf4_path)
print(f"Successfully quantized and saved model to '{model_nf4_path}'.")
assert isinstance(model, Flux)
return model
if __name__ == "__main__":
main()