mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-04 17:04:59 -05:00
* Bump diffusers to 0.21.2. * Add T2IAdapterInvocation boilerplate. * Add T2I-Adapter model to model-management. * (minor) Tidy prepare_control_image(...). * Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation. * Add logic for applying T2I-Adapter weights and accumulating. * Add T2IAdapter to MODEL_CLASSES map. * yarn typegen * Add model probes for T2I-Adapter models. * Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor. * Add T2IAdapterModel.convert_if_required(...). * Fix errors in T2I-Adapter input image sizing logic. * Fix bug with handling of multiple T2I-Adapters. * black / flake8 * Fix typo * yarn build * Add num_channels param to prepare_control_image(...). * Link to upstream diffusers bugfix PR that currently requires a workaround. * feat: Add Color Map Preprocessor Needed for the color T2I Adapter * feat: Add Color Map Preprocessor to Linear UI * Revert "feat: Add Color Map Preprocessor" This reverts commita1119a00bf. * Revert "feat: Add Color Map Preprocessor to Linear UI" This reverts commitbd8a9b82d8. * Fix T2I-Adapter field rendering in workflow editor. * yarn build, yarn typegen --------- Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
172 lines
5.9 KiB
Python
172 lines
5.9 KiB
Python
import inspect
|
|
from enum import Enum
|
|
from typing import Literal, get_origin
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from .base import ( # noqa: F401
|
|
BaseModelType,
|
|
DuplicateModelException,
|
|
InvalidModelException,
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
ModelError,
|
|
ModelNotFoundException,
|
|
ModelType,
|
|
ModelVariantType,
|
|
SchedulerPredictionType,
|
|
SilenceWarnings,
|
|
SubModelType,
|
|
)
|
|
from .clip_vision import CLIPVisionModel
|
|
from .controlnet import ControlNetModel # TODO:
|
|
from .ip_adapter import IPAdapterModel
|
|
from .lora import LoRAModel
|
|
from .sdxl import StableDiffusionXLModel
|
|
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
|
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
|
|
from .t2i_adapter import T2IAdapterModel
|
|
from .textual_inversion import TextualInversionModel
|
|
from .vae import VaeModel
|
|
|
|
MODEL_CLASSES = {
|
|
BaseModelType.StableDiffusion1: {
|
|
ModelType.ONNX: ONNXStableDiffusion1Model,
|
|
ModelType.Main: StableDiffusion1Model,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoRAModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
ModelType.IPAdapter: IPAdapterModel,
|
|
ModelType.CLIPVision: CLIPVisionModel,
|
|
ModelType.T2IAdapter: T2IAdapterModel,
|
|
},
|
|
BaseModelType.StableDiffusion2: {
|
|
ModelType.ONNX: ONNXStableDiffusion2Model,
|
|
ModelType.Main: StableDiffusion2Model,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoRAModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
ModelType.IPAdapter: IPAdapterModel,
|
|
ModelType.CLIPVision: CLIPVisionModel,
|
|
ModelType.T2IAdapter: T2IAdapterModel,
|
|
},
|
|
BaseModelType.StableDiffusionXL: {
|
|
ModelType.Main: StableDiffusionXLModel,
|
|
ModelType.Vae: VaeModel,
|
|
# will not work until support written
|
|
ModelType.Lora: LoRAModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
ModelType.ONNX: ONNXStableDiffusion2Model,
|
|
ModelType.IPAdapter: IPAdapterModel,
|
|
ModelType.CLIPVision: CLIPVisionModel,
|
|
ModelType.T2IAdapter: T2IAdapterModel,
|
|
},
|
|
BaseModelType.StableDiffusionXLRefiner: {
|
|
ModelType.Main: StableDiffusionXLModel,
|
|
ModelType.Vae: VaeModel,
|
|
# will not work until support written
|
|
ModelType.Lora: LoRAModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
ModelType.ONNX: ONNXStableDiffusion2Model,
|
|
ModelType.IPAdapter: IPAdapterModel,
|
|
ModelType.CLIPVision: CLIPVisionModel,
|
|
ModelType.T2IAdapter: T2IAdapterModel,
|
|
},
|
|
BaseModelType.Any: {
|
|
ModelType.CLIPVision: CLIPVisionModel,
|
|
# The following model types are not expected to be used with BaseModelType.Any.
|
|
ModelType.ONNX: ONNXStableDiffusion2Model,
|
|
ModelType.Main: StableDiffusion2Model,
|
|
ModelType.Vae: VaeModel,
|
|
ModelType.Lora: LoRAModel,
|
|
ModelType.ControlNet: ControlNetModel,
|
|
ModelType.TextualInversion: TextualInversionModel,
|
|
ModelType.IPAdapter: IPAdapterModel,
|
|
ModelType.T2IAdapter: T2IAdapterModel,
|
|
},
|
|
# BaseModelType.Kandinsky2_1: {
|
|
# ModelType.Main: Kandinsky2_1Model,
|
|
# ModelType.MoVQ: MoVQModel,
|
|
# ModelType.Lora: LoRAModel,
|
|
# ModelType.ControlNet: ControlNetModel,
|
|
# ModelType.TextualInversion: TextualInversionModel,
|
|
# },
|
|
}
|
|
|
|
MODEL_CONFIGS = list()
|
|
OPENAPI_MODEL_CONFIGS = list()
|
|
|
|
|
|
class OpenAPIModelInfoBase(BaseModel):
|
|
model_name: str
|
|
base_model: BaseModelType
|
|
model_type: ModelType
|
|
|
|
|
|
for base_model, models in MODEL_CLASSES.items():
|
|
for model_type, model_class in models.items():
|
|
model_configs = set(model_class._get_configs().values())
|
|
model_configs.discard(None)
|
|
MODEL_CONFIGS.extend(model_configs)
|
|
|
|
# LS: sort to get the checkpoint configs first, which makes
|
|
# for a better template in the Swagger docs
|
|
for cfg in sorted(model_configs, key=lambda x: str(x)):
|
|
model_name, cfg_name = cfg.__qualname__.split(".")[-2:]
|
|
openapi_cfg_name = model_name + cfg_name
|
|
if openapi_cfg_name in vars():
|
|
continue
|
|
|
|
api_wrapper = type(
|
|
openapi_cfg_name,
|
|
(cfg, OpenAPIModelInfoBase),
|
|
dict(
|
|
__annotations__=dict(
|
|
model_type=Literal[model_type.value],
|
|
),
|
|
),
|
|
)
|
|
|
|
# globals()[openapi_cfg_name] = api_wrapper
|
|
vars()[openapi_cfg_name] = api_wrapper
|
|
OPENAPI_MODEL_CONFIGS.append(api_wrapper)
|
|
|
|
|
|
def get_model_config_enums():
|
|
enums = list()
|
|
|
|
for model_config in MODEL_CONFIGS:
|
|
if hasattr(inspect, "get_annotations"):
|
|
fields = inspect.get_annotations(model_config)
|
|
else:
|
|
fields = model_config.__annotations__
|
|
try:
|
|
field = fields["model_format"]
|
|
except Exception:
|
|
raise Exception("format field not found")
|
|
|
|
# model_format: None
|
|
# model_format: SomeModelFormat
|
|
# model_format: Literal[SomeModelFormat.Diffusers]
|
|
# model_format: Literal[SomeModelFormat.Diffusers, SomeModelFormat.Checkpoint]
|
|
|
|
if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum):
|
|
enums.append(field)
|
|
|
|
elif get_origin(field) is Literal and all(
|
|
isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__
|
|
):
|
|
enums.append(type(field.__args__[0]))
|
|
|
|
elif field is None:
|
|
pass
|
|
|
|
else:
|
|
raise Exception(f"Unsupported format definition in {model_configs.__qualname__}")
|
|
|
|
return enums
|