Files
InvokeAI/invokeai/backend/model_manager/load/model_loaders/vae.py
2024-03-07 10:56:59 +11:00

69 lines
2.8 KiB
Python

# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for VAE model loading in InvokeAI."""
from pathlib import Path
import torch
from omegaconf import DictConfig, OmegaConf
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
from .. import ModelLoaderRegistry
from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VAELoader(GenericDiffusersLoader):
"""Class to load VAE models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
return False
elif (
dest_path.exists()
and (dest_path / "config.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "config.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
else:
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
# TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
else:
checkpoint = torch.load(model_path, map_location="cpu")
# sometimes weights are hidden under "state_dict", and sometimes not
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
assert isinstance(ckpt_config, DictConfig)
vae_model = convert_ldm_vae_to_diffusers(
checkpoint=checkpoint,
vae_config=ckpt_config,
image_size=512,
)
vae_model.to(self._torch_dtype) # set precision appropriately
vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path