1 Commits

Author SHA1 Message Date
Bob
15d87a8f95 github desktop completely screwed me 2020-05-12 11:33:33 -04:00
20 changed files with 615 additions and 1093 deletions

View File

@@ -1,13 +0,0 @@
CHANGELOG:
V2.0.0:
* added $fa values for minkowski and shape - so you can customize how much rounding there is
* rejiggered `key.scad` pipeline for more clarity and less shapes
* implemented "3d_surface" dish - still in beta
* super cool though, you can even change the distribution of points on the surface! just make sure you use monotonically increasing functions
* created "hull" folder to house different ways of creating the overall key shape
* promoted "feature" folder to first-class folder with keytext and switch clearance as new residents
* wrote this changelog!
* `flat_keytop_bottom` for less geometry. didn't help render rounded keys though
* still todo: add a magic scaling variable so you can scale the whole world up, see if that fixes degeneracy
* side-printed keycaps are first class! you can use the `sideways()` modifier to set up sideways keycaps that have flat sides to print on.
* it's much easier to make quick artisans now that the inside of the keycap is differenced from any additive features placed on top

File diff suppressed because it is too large Load Diff

View File

@@ -5,11 +5,88 @@
// without having to rely on this file. Unfortunately that means setting tons of // without having to rely on this file. Unfortunately that means setting tons of
// special variables, but that's a limitation of SCAD we have to work around // special variables, but that's a limitation of SCAD we have to work around
echo($fa);
echo("WHERES THE BEEF");
include <./includes.scad> include <./includes.scad>
dsa_row(3) {
union() {
$key_shape_type="sculpted_square";
$dish_type="disabled";
$skin_extrude_shape = true;
key();
}
}
/* $inverted_dish = true; */
/* $rounded_key = true; */
/* $linear_extrude_shape=true; */
/* $rounded_key=true; */
/* $outset_legends = true; */
/* $inverted_dish =true; */
/* $dish_type = "pyramid"; */
/* legend("q") key(); */
/* $outset_legends = true; */
dcs_row(3) {
/* iso_enter() */
union() {
union() {
/* $minkowski_radius = 10; */
/* $minkowski_radius = 0.12; */
/* $key_shape_type = "iso_enter"; */
$key_shape_type="sculpted_square";
/* $dish_type ="disable"; */
/* $inverted_dish = true; */
/* $stem_type = "disable"; */
/* $dish_type="3d_surface"; */
/* $support_type = "disable"; */
/* $stabilizer_type = "disable"; */
/* rounded_shape(); */
/* minkowski() { */
/* rounded_key(); */
/* translate([0,0,-200]) cube(10); */
// example key /* difference(){ */
dcs_row(5) legend("⇪", size=9) key(); /* key(); */
/* cube(100); */
/* } */
/* minkowski_shape(); */
/* } */
}
}
}
/* translate_u(1,0) {
oem_row(3) {
cherry() legend("q")
union() {
key();
}
}
} */
/* difference() {
translate([0,0,-.1]) cube(1.1);
translate([0.5,0.5,-0.5]) polar_3d_surface(step=0.1);
} */
// Written in 2015 by Torsten Paul <Torsten.Paul@gmx.de>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any
// warranty.
//
// For details of the CC0 Public Domain Dedication see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
// example row // example row
/* for (x = [0:1:4]) { /* for (x = [0:1:4]) {

View File

@@ -1,9 +0,0 @@
module 3d_surface_dish(width, height, depth, inverted) {
echo(inverted ? "inverted" : "not inverted");
// scale_factor is dead reckoning
scale_factor = 1.2;
// the edges on this behave differently than with the previous dish implementations
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,0]) polar_3d_surface(bottom=-10);
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
}

View File

@@ -1,5 +0,0 @@
// features are any premade self-contained objects that go on top or inside
include <features/key_bump.scad>
include <features/clearance_check.scad>
include <features/legends.scad>

View File

@@ -1,24 +0,0 @@
// a fake cherry keyswitch, abstracted out to maybe replace with a better one later
module cherry_keyswitch() {
union() {
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,1,5 - 0.01]) cube([10.5,9.5, 0.01], center=true);
}
hull() {
cube([15.6, 15.6, 0.01], center=true);
translate([0,0,-5.5]) cube([13.5,13.5,0.01], center=true);
}
}
}
//approximate (fully depressed) cherry key to check clearances
module clearance_check() {
if($stem_type == "cherry" || $stem_type == "cherry_rounded"){
color($warning_color){
translate([0,0,3.6 + $stem_inset - 5]) {
cherry_keyswitch();
}
}
}
}

View File

@@ -1,26 +0,0 @@
module keytext(text, position, font_size, depth) {
woffset = (top_total_key_width()/3.5) * position[0];
hoffset = (top_total_key_height()/3.5) * -position[1];
translate([woffset, hoffset, -depth]){
color($tertiary_color) linear_extrude(height=$dish_depth){
text(text=text, font=$font, size=font_size, halign="center", valign="center");
}
}
}
module legends(depth=0) {
if (len($front_legends) > 0) {
front_of_key() {
for (i=[0:len($front_legends)-1]) {
rotate([90,0,0]) keytext($front_legends[i][0], $front_legends[i][1], $front_legends[i][2], depth);
}
}
}
if (len($legends) > 0) {
top_of_key() {
for (i=[0:len($legends)-1]) {
keytext($legends[i][0], $legends[i][1], $legends[i][2], depth);
}
}
}
}

View File

@@ -1,19 +0,0 @@
include <hulls/skin.scad>
include <hulls/linear_extrude.scad>
include <hulls/hull.scad>
// basic key shape, no dish, no inside
// which is only used for dishing to cut the dish off correctly
// $height_difference used for keytop thickness
// extra_slices is a hack to make inverted dishes still work
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
render() {
if ($skin_extrude_shape) {
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else if ($linear_extrude_shape) {
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else {
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
}
}
}

View File

@@ -1,33 +0,0 @@
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
for (index = [0:$height_slices - 1 + extra_slices]) {
hull() {
shape_slice(index / $height_slices, thickness_difference, depth_difference);
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
}
}
}
module shape_slice(progress, thickness_difference, depth_difference) {
skew_this_slice = $top_skew * progress;
x_skew_this_slice = $top_skew_x * progress;
depth_this_slice = ($total_depth - depth_difference) * progress;
tilt_this_slice = -$top_tilt / $key_height * progress;
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
rotate([tilt_this_slice,y_tilt_this_slice,0]){
linear_extrude(height = SMALLEST_POSSIBLE + $minkowski_radius, scale = 0.1){
key_shape(
[
total_key_width(thickness_difference),
total_key_height(thickness_difference)
],
[$width_difference, $height_difference],
progress
);
}
}
}
}

View File

@@ -1,18 +0,0 @@
// corollary is hull_shape_hull
// extra_slices unused, only to match argument signatures
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
height = $total_depth - depth_difference;
width_scale = top_total_key_width() / total_key_width();
height_scale = top_total_key_height() / total_key_height();
translate([0,$linear_extrude_height_adjustment,0]){
linear_extrude(height = height, scale = [width_scale, height_scale]) {
translate([0,-$linear_extrude_height_adjustment,0]){
key_shape(
[total_key_width(thickness_difference), total_key_height(thickness_difference)],
[$width_difference, $height_difference]
);
}
}
}
}

View File

@@ -1,34 +0,0 @@
// use skin() instead of successive hulls. much more correct, and looks faster
// too, in most cases. successive hull relies on overlapping faces which are
// not good. But, skin works on vertex sets instead of shapes, which makes it
// a lot more difficult to use
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
skin([
for (index = [0:$height_slices + extra_slices])
let(
progress = (index / $height_slices),
skew_this_slice = $top_skew * progress,
x_skew_this_slice = $top_skew_x * progress,
depth_this_slice = ($total_depth - depth_difference) * progress,
tilt_this_slice = -$top_tilt / $key_height * progress,
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
)
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
]);
}
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
transform(
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
transform(
rotation([tilt_this_slice,y_tilt_this_slice,0]),
skin_key_shape([
total_key_width(0),
total_key_height(0),
],
[$width_difference, $height_difference],
progress,
thickness_difference
)
)
);

View File

@@ -6,6 +6,7 @@ include <stem_supports.scad>
include <dishes.scad> include <dishes.scad>
include <supports.scad> include <supports.scad>
include <features.scad> include <features.scad>
include <hulls.scad>
include <libraries/geodesic_sphere.scad> include <libraries/geodesic_sphere.scad>
@@ -15,10 +16,10 @@ use <libraries/scad-utils/lists.scad>
use <libraries/scad-utils/shapes.scad> use <libraries/scad-utils/shapes.scad>
use <libraries/skin.scad> use <libraries/skin.scad>
/* [Hidden] */ /* [Hidden] */
SMALLEST_POSSIBLE = 1/128; SMALLEST_POSSIBLE = 1/128;
$fs = .1; // basically disable $fs - though it might be useful for these CGAL problems
$fs = .01;
$unit = 19.05; $unit = 19.05;
// key shape including dish. used as the ouside and inside shape in hollow_key(). allows for itself to be shrunk in depth and width / height // key shape including dish. used as the ouside and inside shape in hollow_key(). allows for itself to be shrunk in depth and width / height
@@ -28,197 +29,31 @@ module shape(thickness_difference, depth_difference=0){
} }
} }
// shape of the key but with soft, rounded edges. no longer includes dish
// randomly doesnt work sometimes
// the dish doesn't _quite_ reach as far as it should
module rounded_shape() {
dished(-$minkowski_radius, $inverted_dish) {
color($primary_color) minkowski(){
// half minkowski in the z direction
color($primary_color) shape_hull($minkowski_radius * 2, $minkowski_radius/2, $inverted_dish ? 2 : 0);
/* cube($minkowski_radius); */
sphere(r=$minkowski_radius, $fn=48);
}
}
/* %envelope(); */
}
// this function is more correct, but takes _forever_ // this function is more correct, but takes _forever_
// the main difference is minkowski happens after dishing, meaning the dish is // the main difference is minkowski happens after dishing, meaning the dish is
// also minkowski'd // also minkowski'd
/* module rounded_shape() { module rounded_shape() {
color($primary_color) minkowski(){ color($primary_color) minkowski(){
// half minkowski in the z direction // half minkowski in the z direction
shape($minkowski_radius * 2, $minkowski_radius/2); shape($minkowski_radius * 2, $minkowski_radius/2);
difference(){ minkowski_object();
sphere(r=$minkowski_radius, $fn=20);
translate([0,0,-$minkowski_radius]){
cube($minkowski_radius * 2, center=true);
}
}
} }
} */ }
// minkowski places this object at every vertex of the other object then mashes
// it all together
module minkowski_object() {
// alternative minkowski shape that needs the bottom of the keycap to be trimmed
/* sphere(1); */
difference(){
// basic key shape, no dish, no inside sphere(r=$minkowski_radius, $fa=360/$minkowski_facets);
// which is only used for dishing to cut the dish off correctly translate([0,0,-$minkowski_radius]){
// $height_difference used for keytop thickness cube($minkowski_radius * 2, center=true);
// extra_slices is a hack to make inverted dishes still work
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
render() {
if ($skin_extrude_shape) {
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else if ($linear_extrude_shape) {
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
} else {
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
} }
} }
} }
// use skin() instead of successive hulls. much more correct, and looks faster
// too, in most cases. successive hull relies on overlapping faces which are
// not good. But, skin works on vertex sets instead of shapes, which makes it
// a lot more difficult to use
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
skin([
for (index = [0:$height_slices + extra_slices])
let(
progress = (index / $height_slices),
skew_this_slice = $top_skew * progress,
x_skew_this_slice = $top_skew_x * progress,
depth_this_slice = ($total_depth - depth_difference) * progress,
tilt_this_slice = -$top_tilt / $key_height * progress,
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
)
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
]);
}
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
transform(
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
transform(
rotation([tilt_this_slice,y_tilt_this_slice,0]),
skin_key_shape([
total_key_width(0),
total_key_height(0),
],
[$width_difference, $height_difference],
progress,
thickness_difference
)
)
);
// corollary is hull_shape_hull
// extra_slices unused, only to match argument signatures
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
height = $total_depth - depth_difference;
width_scale = top_total_key_width() / total_key_width();
height_scale = top_total_key_height() / total_key_height();
translate([0,$linear_extrude_height_adjustment,0]){
linear_extrude(height = height, scale = [width_scale, height_scale]) {
translate([0,-$linear_extrude_height_adjustment,0]){
key_shape(
[total_key_width(thickness_difference), total_key_height(thickness_difference)],
[$width_difference, $height_difference]
);
}
}
}
}
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
for (index = [0:$height_slices - 1 + extra_slices]) {
hull() {
shape_slice(index / $height_slices, thickness_difference, depth_difference);
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
}
}
}
module shape_slice(progress, thickness_difference, depth_difference) {
skew_this_slice = $top_skew * progress;
x_skew_this_slice = $top_skew_x * progress;
depth_this_slice = ($total_depth - depth_difference) * progress;
tilt_this_slice = -$top_tilt / $key_height * progress;
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
rotate([tilt_this_slice,y_tilt_this_slice,0]){
linear_extrude(height = SMALLEST_POSSIBLE){
key_shape(
[
total_key_width(thickness_difference),
total_key_height(thickness_difference)
],
[$width_difference, $height_difference],
progress
);
}
}
}
}
// for when you want something to only exist inside the keycap.
// used for the support structure
module inside() {
intersection() {
shape($wall_thickness, $keytop_thickness);
children();
}
}
// for when you want something to only exist outside the keycap
module outside() {
difference() {
children();
shape($wall_thickness, $keytop_thickness);
}
}
// put something at the top of the key, with no adjustments for dishing
module top_placement(depth_difference=0) {
top_tilt_by_height = -$top_tilt / $key_height;
top_tilt_y_by_length = $double_sculpted ? (-$top_tilt_y / $key_length) : 0;
minkowski_height = $rounded_key ? $minkowski_radius : 0;
translate([$top_skew_x + $dish_skew_x, $top_skew + $dish_skew_y, $total_depth - depth_difference + minkowski_height/2]){
rotate([top_tilt_by_height, top_tilt_y_by_length,0]){
children();
}
}
}
module front_placement() {
// all this math is to take top skew and tilt into account
// we need to find the new effective height and depth of the top, front lip
// of the keycap to find the angle so we can rotate things correctly into place
total_depth_difference = sin(-$top_tilt) * (top_total_key_height()/2);
total_height_difference = $top_skew + (1 - cos(-$top_tilt)) * (top_total_key_height()/2);
angle = atan2(($total_depth - total_depth_difference), ($height_difference/2 + total_height_difference));
hypotenuse = ($total_depth -total_depth_difference) / sin(angle);
translate([0,-total_key_height()/2,0]) {
rotate([-(90-angle), 0, 0]) {
translate([0,0,hypotenuse/2]){
children();
}
}
}
}
// just to DRY up the code
module _dish() {
color($secondary_color) dish(top_total_key_width() + $dish_overdraw_width, top_total_key_height() + $dish_overdraw_height, $dish_depth, $inverted_dish);
}
module envelope(depth_difference=0) { module envelope(depth_difference=0) {
s = 1.5; s = 1.5;
@@ -230,18 +65,6 @@ module envelope(depth_difference=0) {
} }
} }
// I think this is unused
module dished_for_show() {
difference(){
union() {
envelope();
if ($inverted_dish) top_placement(0) _dish();
}
if (!$inverted_dish) top_placement(0) _dish();
}
}
// for when you want to take the dish out of things // for when you want to take the dish out of things
// used for adding the dish to the key shape and making sure stems don't stick out the top // used for adding the dish to the key shape and making sure stems don't stick out the top
// creates a bounding box 1.5 times larger in width and height than the keycap. // creates a bounding box 1.5 times larger in width and height than the keycap.
@@ -250,15 +73,21 @@ module dished(depth_difference = 0, inverted = false) {
children(); children();
difference(){ difference(){
union() { union() {
// envelope is needed to "fill in" the rest of the keycap
envelope(depth_difference); envelope(depth_difference);
if (inverted) top_placement(depth_difference) _dish(); if (inverted) top_placement(depth_difference) _dish(inverted);
} }
if (!inverted) top_placement(depth_difference) _dish(); if (!inverted) top_placement(depth_difference) _dish(inverted);
} }
} }
} }
// puts it's children at the center of the dishing on the key, including dish height // just to DRY up the code
module _dish(inverted=$inverted_dish) {
color($secondary_color) dish(top_total_key_width() + $dish_overdraw_width, top_total_key_height() + $dish_overdraw_height, $dish_depth, inverted);
}
// puts its children at the center of the dishing on the key, including dish height
// more user-friendly than top_placement // more user-friendly than top_placement
module top_of_key(){ module top_of_key(){
// if there is a dish, we need to account for how much it digs into the top // if there is a dish, we need to account for how much it digs into the top
@@ -271,6 +100,7 @@ module top_of_key(){
} }
} }
// puts its children at each keystem position provided
module keystem_positions(positions) { module keystem_positions(positions) {
for (connector_pos = positions) { for (connector_pos = positions) {
translate(connector_pos) { translate(connector_pos) {
@@ -296,92 +126,132 @@ module stems_for(positions, stem_type) {
} }
} }
// put something at the top of the key, with no adjustments for dishing
module top_placement(depth_difference=0) {
top_tilt_by_height = -$top_tilt / $key_height;
top_tilt_y_by_length = $double_sculpted ? (-$top_tilt_y / $key_length) : 0;
minkowski_height = $rounded_key ? $minkowski_radius : 0;
translate([$top_skew_x + $dish_skew_x, $top_skew + $dish_skew_y, $total_depth - depth_difference + minkowski_height/2]){
rotate([top_tilt_by_height, top_tilt_y_by_length,0]){
children();
} }
} }
} }
module front_of_key() {
// all this math is to take top skew and tilt into account
// we need to find the new effective height and depth of the top, front lip
// of the keycap to find the angle so we can rotate things correctly into place
total_depth_difference = sin(-$top_tilt) * (top_total_key_height()/2);
total_height_difference = $top_skew + (1 - cos(-$top_tilt)) * (top_total_key_height()/2);
angle = atan2(($total_depth - total_depth_difference), ($height_difference/2 + total_height_difference));
hypotenuse = ($total_depth -total_depth_difference) / sin(angle);
translate([0,-total_key_height()/2,0]) {
rotate([-(90-angle), 0, 0]) {
translate([0,0,hypotenuse/2]){
children();
} }
} }
} }
} }
} module outer_shape() {
} if ($rounded_key) {
rounded_shape();
} else {
shape(0, 0);
} }
} }
// legends / artisan support module inner_shape(extra_wall_thickness = 0, extra_keytop_thickness = 0) {
module artisan(depth) { translate([0,0,-SMALLEST_POSSIBLE]) {
top_of_key() { if ($flat_keytop_bottom) {
// artisan objects / outset shape legends /* $key_shape_type="square"; */
color($secondary_color) children(); $height_slices = 1;
} color($primary_color) shape_hull($wall_thickness + extra_wall_thickness, $keytop_thickness + extra_keytop_thickness, 0);
}
// key with hollowed inside but no stem
module hollow_key() {
difference(){
if ($rounded_key) {
rounded_shape();
} else { } else {
shape(0, 0); shape($wall_thickness + extra_wall_thickness, $keytop_thickness + extra_keytop_thickness);
}
// translation purely for aesthetic purposes, to get rid of that awful lattice
translate([0,0,-SMALLEST_POSSIBLE]) {
shape($wall_thickness, $keytop_thickness);
} }
} }
} }
// additive objects at the top of the key
module additive_features(inset) {
top_of_key() {
if($key_bump) keybump($key_bump_depth, $key_bump_edge);
if(!inset && $children > 0) color($secondary_color) children();
}
if($outset_legends) legends(0);
// render the clearance check if it's enabled, but don't have it intersect with anything
if ($clearance_check) %clearance_check();
}
// subtractive objects at the top of the key
module subtractive_features(inset) {
top_of_key() {
if (inset && $children > 0) color($secondary_color) children();
}
if(!$outset_legends) legends($inset_legend_depth);
// subtract the clearance check if it's enabled, letting the user see the
// parts of the keycap that will hit the cherry switch
if ($clearance_check) %clearance_check();
}
module inside_features() {
translate([0, 0, $stem_inset]) {
// both stem and support are optional
if ($stabilizer_type != "disable") stems_for($stabilizers, $stabilizer_type);
if ($stem_type != "disable") stems_for($stem_positions, $stem_type);
if ($stabilizer_type != "disable") support_for($stabilizers, $stabilizer_type);
// always render stem support even if there isn't a stem.
// rendering flat support w/no stem is much more common than a hollow keycap
// so if you want a hollow keycap you'll have to turn support off entirely
support_for($stem_positions, $stem_type);
}
}
// The final, penultimate key generation function. // The final, penultimate key generation function.
// takes all the bits and glues them together. requires configuration with special variables. // takes all the bits and glues them together. requires configuration with special variables.
module key(inset = false) { module key(inset=false) {
difference(){
union() {
outer_shape();
additive_features(inset);
}
difference() {
inner_shape();
inside_features();
}
subtractive_features(inset);
}
}
module rounded_key(inset=false) {
difference() { difference() {
union(){ minkowski() {
// the shape of the key, inside and out difference() {
hollow_key(); outer_shape();
if($key_bump) top_of_key() keybump($key_bump_depth, $key_bump_edge); inner_shape();
// additive objects at the top of the key
// outside() makes them stay out of the inside. it's a bad name
if(!inset && $children > 0) outside() artisan(0) children();
if($outset_legends) legends(0);
// render the clearance check if it's enabled, but don't have it intersect with anything
if ($clearance_check) %clearance_check();
}
// subtractive objects at the top of the key
// no outside() - I can't think of a use for it. will save render time
if (inset && $children > 0) artisan($inset_legend_depth) children();
if(!$outset_legends) legends($inset_legend_depth);
// subtract the clearance check if it's enabled, letting the user see the
// parts of the keycap that will hit the cherry switch
if ($clearance_check) %clearance_check();
}
// both stem and support are optional
if ($stem_type != "disable" || ($stabilizers != [] && $stabilizer_type != "disable")) {
dished($keytop_thickness, $inverted_dish) {
translate([0, 0, $stem_inset]) {
if ($stabilizer_type != "disable") stems_for($stabilizers, $stabilizer_type);
if ($stem_type != "disable") stems_for($stem_positions, $stem_type);
} }
minkowski_object();
} }
subtractive_features(inset);
} }
if ($support_type != "disable"){ /* additive_features(inset); */
inside() {
translate([0, 0, $stem_inset]) {
if ($stabilizer_type != "disable") support_for($stabilizers, $stabilizer_type);
// always render stem support even if there isn't a stem. /* intersection() {
// rendering flat support w/no stem is much more common than a hollow keycap inner_shape($wall_thickness, $keytop_thickness);
// so if you want a hollow keycap you'll have to turn support off entirely inside_features();
support_for($stem_positions, $stem_type); } */
}
}
}
} }
// actual full key with space carved out and keystem/stabilizer connectors // actual full key with space carved out and keystem/stabilizer connectors

1
src/key_features.scad Normal file
View File

@@ -0,0 +1 @@
include <features/key_bump.scad>

View File

@@ -1,76 +0,0 @@
include <../functions.scad>
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function p(x, y) = [ x, y, surface_function(x, y) ];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
function fan(a, i) =
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
points = flatten(concat(
// top surface
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
// bottom surface as triangle fan
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
// sides
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
));
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
scount = 8 * size / step;
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
faces = concat(tfaces, sfaces);
polyhedron(points, faces, convexity = 8);
}
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function to_polar(q) = q * (90 / size);
function p(x, y) = [
surface_distribution_function(to_polar(x)),
surface_distribution_function(to_polar(y)),
surface_function(surface_distribution_function(to_polar(x)), surface_distribution_function(to_polar(y)))
];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
function fan(a, i) =
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
points = flatten(concat(
// top surface
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
// bottom surface as triangle fan
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
// sides
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
));
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
scount = 8 * size / step;
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
faces = concat(tfaces, sfaces);
polyhedron(points, faces, convexity = 8);
}
function surface_distribution_function(dim) = sin(dim) * $3d_surface_size;
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));

View File

@@ -1,3 +1,21 @@
function sign_x(i,n) =
i < n/4 || i > n*3/4 ? 1 :
i > n/4 && i < n*3/4 ? -1 :
0;
function sign_y(i,n) =
i > 0 && i < n/2 ? 1 :
i > n/2 ? -1 :
0;
function rectangle_profile(size=[1,1],fn=32) = [
for (index = [0:fn-1])
let(a = index/fn*360)
sign_x(index, fn) * [size[0]/2,0]
+ sign_y(index, fn) * [0,size[1]/2]
];
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [ function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
for (index = [0:fn-1]) for (index = [0:fn-1])
let(a = index/fn*360) let(a = index/fn*360)
@@ -6,12 +24,10 @@ function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
+ sign_y(index, fn) * [0,size[1]/2-r] + sign_y(index, fn) * [0,size[1]/2-r]
]; ];
function sign_x(i,n) = function double_rounded_rectangle_profile(size=[1,1], r=1, fn=32) = [
i < n/4 || i > n-n/4 ? 1 : for (index = [0:fn-1])
i > n/4 && i < n-n/4 ? -1 : let(a = index/fn*360)
0; r * [cos(a), sin(a)]
+ sign_x(index, fn) * [size[0]/2-r,0]
function sign_y(i,n) = + sign_y(index, fn) * [0,size[1]/2-r]
i > 0 && i < n/2 ? 1 : ];
i > n/2 ? -1 :
0;

View File

@@ -37,7 +37,7 @@ $outset_legends = false;
// Height in units of key. should remain 1 for most uses // Height in units of key. should remain 1 for most uses
$key_height = 1.0; $key_height = 1.0;
// Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key // Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key
$keytop_thickness = 1; $keytop_thickness = 2;
// Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls // Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls
$wall_thickness = 3; $wall_thickness = 3;
// Radius of corners of keycap // Radius of corners of keycap
@@ -86,7 +86,7 @@ $extra_long_stem_support = false;
// Key shape type, determines the shape of the key. default is 'rounded square' // Key shape type, determines the shape of the key. default is 'rounded square'
$key_shape_type = "rounded_square"; $key_shape_type = "rounded_square";
// ISO enter needs to be linear extruded NOT from the center. this tells the program how far up 'not from the center' is // ISO enter needs to be linear extruded NOT from the center when not using skin. this tells the program how far up 'not from the center' is
$linear_extrude_height_adjustment = 0; $linear_extrude_height_adjustment = 0;
// How many slices will be made, to approximate curves on corners. Leave at 1 if you are not curving corners // How many slices will be made, to approximate curves on corners. Leave at 1 if you are not curving corners
// If you're doing fancy bowed keycap sides, this controls how many slices you take // If you're doing fancy bowed keycap sides, this controls how many slices you take
@@ -183,3 +183,16 @@ $secondary_color = [.4412, .7, .3784];
$tertiary_color = [1, .6941, .2]; $tertiary_color = [1, .6941, .2];
$quaternary_color = [.4078, .3569, .749]; $quaternary_color = [.4078, .3569, .749];
$warning_color = [1,0,0, 0.15]; $warning_color = [1,0,0, 0.15];
// 3d surface variables
// see functions.scad for the surface function
$3d_surface_size = 10;
$3d_surface_step = 1;
// normally the bottom of the keytop looks like the top - curved, at least
// underneath the support structure. This ensures there's a minimum thickness for the
// underside of the keycap, but it's a fair bit of geometry
$flat_keytop_bottom = true;
// how many facets circles will have when used in these features
$minkowski_facets = 30;
$shape_facets = 30;

View File

@@ -32,9 +32,11 @@ module key_shape(size, delta, progress = 0) {
function skin_key_shape(size, delta, progress = 0, thickness_difference) = function skin_key_shape(size, delta, progress = 0, thickness_difference) =
$key_shape_type == "rounded_square" ? $key_shape_type == "rounded_square" ?
skin_rounded_square(size, delta, progress) : skin_rounded_square(size, delta, progress, thickness_difference) :
$key_shape_type == "sculpted_square" ? $key_shape_type == "sculpted_square" ?
skin_sculpted_square_shape(size, delta, progress) : skin_sculpted_square_shape(size, delta, progress, thickness_difference) :
$key_shape_type == "square" ?
skin_square_shape(size, delta, progress, thickness_difference) :
$key_shape_type == "iso_enter" ? $key_shape_type == "iso_enter" ?
skin_iso_enter_shape(size, delta, progress, thickness_difference) : skin_iso_enter_shape(size, delta, progress, thickness_difference) :
echo("Warning: unsupported $key_shape_type for skin shape. disable skin_extrude_shape or pick a new shape"); echo("Warning: unsupported $key_shape_type for skin shape. disable skin_extrude_shape or pick a new shape");

View File

@@ -1,12 +1,12 @@
include <../libraries/rounded_rectangle_profile.scad> include <../libraries/rounded_rectangle_profile.scad>
module rounded_square_shape(size, delta, progress, center = true) { module rounded_square_shape(size, delta, progress, center = true) {
offset(r=$corner_radius){ offset(r=$corner_radius, $fa=360/$shape_facets){
square_shape([size.x - $corner_radius*2, size.y - $corner_radius*2], delta, progress); square_shape([size.x - $corner_radius*2, size.y - $corner_radius*2], delta, progress);
} }
} }
// for skin // for skin
function skin_rounded_square(size, delta, progress) = function skin_rounded_square(size, delta, progress, thickness_difference) =
rounded_rectangle_profile(size - (delta * progress), fn=36, r=$corner_radius); rounded_rectangle_profile(size - (delta * progress) - [thickness_difference, thickness_difference]*2, fn=$shape_facets, r=$corner_radius);

View File

@@ -37,7 +37,7 @@ module sculpted_square_shape(size, delta, progress) {
height - extra_height_this_slice height - extra_height_this_slice
]; ];
offset(r = extra_corner_radius_this_slice) { offset(r = extra_corner_radius_this_slice, $fa=360/$shape_facets) {
offset(r = -extra_corner_radius_this_slice) { offset(r = -extra_corner_radius_this_slice) {
side_rounded_square(square_size, r = $more_side_sculpting_factor * progress); side_rounded_square(square_size, r = $more_side_sculpting_factor * progress);
} }
@@ -46,7 +46,7 @@ module sculpted_square_shape(size, delta, progress) {
// fudging the hell out of this, I don't remember what the negative-offset-positive-offset was doing in the module above // fudging the hell out of this, I don't remember what the negative-offset-positive-offset was doing in the module above
// also no 'bowed' square shape for now // also no 'bowed' square shape for now
function skin_sculpted_square_shape(size, delta, progress) = function skin_sculpted_square_shape(size, delta, progress, thickness_difference) =
let( let(
width = size[0], width = size[0],
height = size[1], height = size[1],
@@ -64,10 +64,10 @@ function skin_sculpted_square_shape(size, delta, progress) =
extra_corner_radius_this_slice = ($corner_radius + extra_corner_size), extra_corner_radius_this_slice = ($corner_radius + extra_corner_size),
square_size = [ square_size = [
width - extra_width_this_slice, width - extra_width_this_slice - thickness_difference,
height - extra_height_this_slice height - extra_height_this_slice - thickness_difference
] ]
) rounded_rectangle_profile(square_size - [extra_corner_radius_this_slice, extra_corner_radius_this_slice]/4, fn=36, r=extra_corner_radius_this_slice/1.5 + $more_side_sculpting_factor * progress); ) double_rounded_rectangle_profile(square_size - [extra_corner_radius_this_slice, extra_corner_radius_this_slice]/4, fn=36, r=extra_corner_radius_this_slice/1.5 + $more_side_sculpting_factor * progress);
/* offset(r = extra_corner_radius_this_slice) { /* offset(r = extra_corner_radius_this_slice) {
offset(r = -extra_corner_radius_this_slice) { offset(r = -extra_corner_radius_this_slice) {
@@ -85,10 +85,10 @@ module side_rounded_square(size, r) {
sw = iw / resolution; sw = iw / resolution;
union() { union() {
if (sr > 0) { if (sr > 0) {
translate([-iw/2, 0]) scale([sr, sh]) circle(d = resolution); translate([-iw/2, 0]) scale([sr, sh]) circle(d = resolution, $fa=360/$shape_facets);
translate([iw/2, 0]) scale([sr, sh]) circle(d = resolution); translate([iw/2, 0]) scale([sr, sh]) circle(d = resolution, $fa=360/$shape_facets);
translate([0, -ih/2]) scale([sw, sr]) circle(d = resolution); translate([0, -ih/2]) scale([sw, sr]) circle(d = resolution, $fa=360/$shape_facets);
translate([0, ih/2]) scale([sw, sr]) circle(d = resolution); translate([0, ih/2]) scale([sw, sr]) circle(d = resolution, $fa=360/$shape_facets);
} }
square([iw, ih], center=true); square([iw, ih], center=true);
} }

View File

@@ -1,4 +1,6 @@
use <../functions.scad> use <../functions.scad>
include <../libraries/rounded_rectangle_profile.scad>
// we do this weird key_shape_type check here because rounded_square uses // we do this weird key_shape_type check here because rounded_square uses
// square_shape, and we want flat sides to work for that too. // square_shape, and we want flat sides to work for that too.
@@ -28,3 +30,17 @@ module flat_sided_square_shape(size, delta, progress) {
[(-size.x + (delta.x - extra_keytop_length_for_flat_sides()) * progress)/2, (size.y - delta.y * progress)/2] [(-size.x + (delta.x - extra_keytop_length_for_flat_sides()) * progress)/2, (size.y - delta.y * progress)/2]
]); ]);
} }
function skin_square_shape(size, delta, progress, thickness_difference) =
let(
width = size[0],
height = size[1],
width_difference = delta[0] * progress,
height_difference = delta[1] * progress,
square_size = [
width - width_difference - thickness_difference,
height - height_difference - thickness_difference
]
) rectangle_profile(square_size, fn=36);