# this trains a dense neural network on MNIST program.options_from_args() import torchvision data = [] for train in True, False: ds = torchvision.datasets.MNIST(root='/tmp', train=train, download=True) # normalize to [0,1] before input samples = sfix.input_tensor_via(0, ds.data / 255., binary=True) labels = sint.input_tensor_via(0, ds.targets, binary=True, one_hot=True) data += [(labels, samples)] import torch import torch.nn as nn net = nn.Sequential( nn.Conv2d(1, 20, 5), nn.ReLU(), nn.AvgPool2d(2), nn.Conv2d(20, 50, 5), nn.ReLU(), nn.AvgPool2d(2), nn.Flatten(), nn.ReLU(), nn.Linear(800, 500), nn.ReLU(), nn.Linear(500, 10) ) # test network ds = torchvision.datasets.MNIST( root='/tmp', transform=torchvision.transforms.ToTensor()) inputs = next(iter(torch.utils.data.DataLoader(ds)))[0] print(inputs.shape) outputs = net(inputs) from Compiler import ml ml.set_n_threads(int(program.args[2])) layers = ml.layers_from_torch(net, data[0][1].shape, 128) layers[0].X = data[0][1] layers[-1].Y = data[0][0] optimizer = ml.SGD(layers) optimizer.run_by_args(program, int(program.args[1]), 128, data[1][1], data[1][0])