""" This modules contains basic types for binary circuits. The fixed-length types obtained by :py:obj:`get_type(n)` are the preferred way of using them, and in some cases required in connection with container types. """ from Compiler.types import MemValue, read_mem_value, regint, Array, cint from Compiler.types import _bitint, _number, _fix, _structure, _bit, _vec, sint from Compiler.program import Tape, Program from Compiler.exceptions import * from Compiler import util, oram, floatingpoint, library from Compiler import instructions_base import Compiler.GC.instructions as inst import operator import math from functools import reduce class bits(Tape.Register, _structure, _bit): """ Base class for binary registers. """ n = 40 unit = 64 PreOp = staticmethod(floatingpoint.PreOpN) decomposed = None @staticmethod def PreOR(l): return [1 - x for x in \ floatingpoint.PreOpN(operator.mul, \ [1 - x for x in l])] @classmethod def get_type(cls, length): """ Returns a fixed-length type. """ if length == 1: return cls.bit_type if length not in cls.types: class bitsn(cls): n = length cls.types[length] = bitsn bitsn.clear_type = cbits.get_type(length) bitsn.__name__ = cls.__name__ + str(length) return cls.types[length] @classmethod def conv(cls, other): if isinstance(other, cls): return other elif isinstance(other, MemValue): return cls.conv(other.read()) else: res = cls() res.load_other(other) return res hard_conv = conv @classmethod def compose(cls, items, bit_length=1): return cls.bit_compose(sum([util.bit_decompose(item, bit_length) for item in items], [])) @classmethod def bit_compose(cls, bits): bits = list(bits) if len(bits) == 1: return bits[0] bits = list(bits) for i in range(len(bits)): if util.is_constant(bits[i]): bits[i] = sbit(bits[i]) res = cls.new(n=len(bits)) if len(bits) <= cls.unit: cls.bitcom(res, *(sbit.conv(bit) for bit in bits)) else: n_bak = bits[0].n bits[0].n = 1 res = cls.trans(bits)[0] bits[0].n = n_bak res.decomposed = bits return res def bit_decompose(self, bit_length=None): n = bit_length or self.n suffix = [0] * (n - self.n) if n == 1 and self.n == 1: return [self] n = min(n, self.n) if self.decomposed is None or len(self.decomposed) < n: if n <= self.unit: res = [self.bit_type() for i in range(n)] self.bitdec(self, *res) else: res = self.bit_type.trans([self]) self.decomposed = res return res + suffix else: return self.decomposed[:n] + suffix @staticmethod def bit_decompose_clear(a, n_bits): res = [cbits.get_type(a.size)() for i in range(n_bits)] cbits.conv_cint_vec(a, *res) return res @classmethod def malloc(cls, size, creator_tape=None): return Program.prog.malloc(size, cls, creator_tape=creator_tape) @staticmethod def n_elements(): return 1 @classmethod def mem_size(cls): return math.ceil(cls.n / cls.unit) @classmethod def load_mem(cls, address, mem_type=None, size=None): if size not in (None, 1): v = [cls.load_mem(address + i) for i in range(size)] return cls.vec(v) res = cls() if mem_type == 'sd': return cls.load_dynamic_mem(address) else: for i in range(res.size): cls.load_inst[util.is_constant(address)](res[i], address + i) return res def store_in_mem(self, address): self.store_inst[isinstance(address, int)](self, address) @classmethod def new(cls, value=None, n=None): return cls.get_type(n)(value) def __init__(self, value=None, n=None, size=None): assert n == self.n or n is None if size != 1 and size is not None: raise Exception('invalid size for bit type: %s' % size) self.n = n or self.n size = math.ceil(self.n / self.unit) if self.n != None else None Tape.Register.__init__(self, self.reg_type, Program.prog.curr_tape, size=size) if value is not None: self.load_other(value) def copy(self): return type(self).new(n=instructions_base.get_global_vector_size()) def set_length(self, n): if n > self.n: raise Exception('too long: %d/%d' % (n, self.n)) self.n = n def set_size(self, size): pass def load_other(self, other): if isinstance(other, cint): assert(self.n == other.size) self.conv_regint_by_bit(self.n, self, other.to_regint(1)) elif isinstance(other, int): self.set_length(self.n or util.int_len(other)) self.load_int(other) elif isinstance(other, regint): assert(other.size == math.ceil(self.n / self.unit)) for i, (x, y) in enumerate(zip(self, other)): self.conv_regint(min(self.unit, self.n - i * self.unit), x, y) elif (isinstance(self, type(other)) or isinstance(other, type(self))) \ and self.n == other.n: for i in range(math.ceil(self.n / self.unit)): self.mov(self[i], other[i]) elif isinstance(other, sint): self.mov(self, sbitvec(other, self.n).elements()[0]) else: try: bits = other.bit_decompose() bits = bits[:self.n] + [sbit(0)] * (self.n - len(bits)) other = self.bit_compose(bits) assert(isinstance(other, type(self))) assert(other.n == self.n) self.load_other(other) except: raise CompilerError('cannot convert %s/%s from %s to %s' % \ (str(other), repr(other), type(other), type(self))) def long_one(self): return 2**self.n - 1 if self.n != None else None def __repr__(self): if self.n != None: suffix = '%d' % self.n if type(self).n != None and type(self).n != self.n: suffix += '/%d' % type(self).n else: suffix = 'undef' return '%s(%s)' % (super(bits, self).__repr__(), suffix) __str__ = __repr__ def _new_by_number(self, i, size=1): assert(size == 1) n = min(self.unit, self.n - (i - self.i) * self.unit) res = self.get_type(n)() res.i = i res.program = self.program return res def if_else(self, x, y): """ Vectorized oblivious selection:: sb32 = sbits.get_type(32) print_ln('%s', sb32(3).if_else(sb32(5), sb32(2)).reveal()) This will output 1. """ return result_conv(x, y)(self & (x ^ y) ^ y) class cbits(bits): """ Clear bits register. Helper type with limited functionality. """ max_length = 64 reg_type = 'cb' is_clear = True load_inst = (None, inst.ldmcb) store_inst = (None, inst.stmcb) bitdec = inst.bitdecc conv_regint = staticmethod(lambda n, x, y: inst.convcint(x, y)) conv_cint_vec = inst.convcintvec @classmethod def bit_compose(cls, bits): return sum(bit << i for i, bit in enumerate(bits)) @classmethod def conv_regint_by_bit(cls, n, res, other): assert n == res.n assert n == other.size cls.conv_cint_vec(cint(other, size=other.size), res) types = {} def load_int(self, value): self.load_other(regint(value)) def store_in_dynamic_mem(self, address): inst.stmsdci(self, cbits.conv(address)) def clear_op(self, other, c_inst, ci_inst, op): if isinstance(other, cbits): res = cbits.get_type(max(self.n, other.n))() c_inst(res, self, other) return res elif isinstance(other, sbits): return NotImplemented else: if util.is_constant(other): if other >= 2**31 or other < -2**31: return op(self, cbits(other)) res = cbits.get_type(max(self.n, len(bin(other)) - 2))() ci_inst(res, self, other) return res else: return op(self, cbits(other)) __add__ = lambda self, other: \ self.clear_op(other, inst.addcb, inst.addcbi, operator.add) __sub__ = lambda self, other: \ self.clear_op(-other, inst.addcb, inst.addcbi, operator.add) def __xor__(self, other): if isinstance(other, (sbits, sbitvec)): return NotImplemented elif isinstance(other, cbits): res = cbits.get_type(max(self.n, other.n))() assert res.size == self.size assert res.size == other.size inst.xorcb(res.n, res, self, other) return res else: return self.clear_op(other, None, inst.xorcbi, operator.xor) __radd__ = __add__ __rxor__ = __xor__ def __mul__(self, other): if isinstance(other, cbits): return NotImplemented else: try: res = cbits.get_type(min(self.max_length, self.n+util.int_len(other)))() inst.mulcbi(res, self, other) return res except TypeError: return NotImplemented def __rshift__(self, other): res = cbits.new(n=self.n-other) inst.shrcbi(res, self, other) return res def __lshift__(self, other): res = cbits.get_type(self.n+other)() inst.shlcbi(res, self, other) return res def print_reg(self, desc=''): inst.print_regb(self, desc) def print_reg_plain(self): inst.print_reg_signed(self.n, self) output = print_reg_plain def print_if(self, string): inst.cond_print_strb(self, string) def reveal(self): return self def to_regint(self, dest=None): if dest is None: dest = regint() if self.n > 64: raise CompilerError('too many bits') inst.convcbit(dest, self) return dest def to_regint_by_bit(self): if self.n != None: res = regint(size=self.n) else: res = regint() inst.convcbitvec(self.n, res, self) return res class sbits(bits): """ Secret bits register. This type supports basic bit-wise operations:: sb32 = sbits.get_type(32) a = sb32(3) b = sb32(5) print_ln('XOR: %s', (a ^ b).reveal()) print_ln('AND: %s', (a & b).reveal()) print_ln('NOT: %s', (~a).reveal()) This will output the following:: XOR: 6 AND: 1 NOT: -4 Instances can be also be initalized from :py:obj:`~Compiler.types.regint` and :py:obj:`~Compiler.types.sint`. """ max_length = 64 reg_type = 'sb' is_clear = False clear_type = cbits default_type = cbits load_inst = (inst.ldmsbi, inst.ldmsb) store_inst = (inst.stmsbi, inst.stmsb) bitdec = inst.bitdecs bitcom = inst.bitcoms conv_regint = inst.convsint @classmethod def conv_regint_by_bit(cls, n, res, other): tmp = cbits.get_type(n)() tmp.conv_regint_by_bit(n, tmp, other) res.load_other(tmp) mov = inst.movsb types = {} def __init__(self, *args, **kwargs): bits.__init__(self, *args, **kwargs) @staticmethod def new(value=None, n=None): if n == 1: return sbit(value) else: return sbits.get_type(n)(value) @staticmethod def get_random_bit(): res = sbit() inst.bitb(res) return res @classmethod def get_input_from(cls, player, n_bits=None): """ Secret input from :py:obj:`player`. :param: player (int) """ if n_bits is None: n_bits = cls.n res = cls() inst.inputb(player, n_bits, 0, res) return res # compatiblity to sint get_raw_input_from = get_input_from @classmethod def load_dynamic_mem(cls, address): res = cls() if isinstance(address, int): inst.ldmsd(res, address, cls.n) else: inst.ldmsdi(res, address, cls.n) return res def store_in_dynamic_mem(self, address): if isinstance(address, int): inst.stmsd(self, address) else: inst.stmsdi(self, cbits.conv(address)) def load_int(self, value): if (abs(value) > (1 << self.n)): raise Exception('public value %d longer than %d bits' \ % (value, self.n)) if self.n <= 32: inst.ldbits(self, self.n, value) else: size = math.ceil(self.n / self.unit) tmp = regint(size=size) for i in range(size): tmp[i].load_int((value >> (i * 64)) % 2**64) self.load_other(tmp) def load_other(self, other): if isinstance(other, cbits) and self.n == other.n: inst.convcbit2s(self.n, self, other) else: super(sbits, self).load_other(other) @read_mem_value def __add__(self, other): if isinstance(other, int) or other is None: return self.xor_int(other) else: if not isinstance(other, sbits): other = self.conv(other) if self.n is None or other.n is None: assert self.n == other.n n = None else: n = min(self.n, other.n) res = self.new(n=n) inst.xors(n, res, self, other) if self.n != None and max(self.n, other.n) > n: if self.n > n: longer = self else: longer = other bits = res.bit_decompose() + longer.bit_decompose()[n:] res = self.bit_compose(bits) return res __radd__ = __add__ __sub__ = __add__ __xor__ = __add__ __rxor__ = __add__ @read_mem_value def __rsub__(self, other): if isinstance(other, cbits): return other + self else: return self.xor_int(other) @read_mem_value def __mul__(self, other): if isinstance(other, int): return self.mul_int(other) try: if min(self.n, other.n) != 1: raise NotImplementedError('high order multiplication') n = max(self.n, other.n) res = self.new(n=max(self.n, other.n)) order = (self, other) if self.n != 1 else (other, self) inst.andrs(n, res, *order) return res except AttributeError: return NotImplemented __rmul__ = __mul__ @read_mem_value def __and__(self, other): if util.is_zero(other): return 0 elif util.is_all_ones(other, self.n) or \ (other is None and self.n == None): return self res = self.new(n=self.n) if not isinstance(other, sbits): other = cbits.get_type(self.n).conv(other) inst.andm(self.n, res, self, other) return res other = self.conv(other) assert(self.n == other.n) inst.ands(self.n, res, self, other) return res __rand__ = __and__ def xor_int(self, other): if other == 0: return self elif other == self.long_one(): return ~self self_bits = self.bit_decompose() other_bits = util.bit_decompose(other, max(self.n, util.int_len(other))) extra_bits = [self.new(b, n=1) for b in other_bits[self.n:]] return self.bit_compose([~x if y else x \ for x,y in zip(self_bits, other_bits)] \ + extra_bits) def mul_int(self, other): assert(util.is_constant(other)) if other == 0: return 0 elif other == 1: return self elif self.n == 1: bits = util.bit_decompose(other, util.int_len(other)) zero = sbit(0) mul_bits = [self if b else zero for b in bits] return self.bit_compose(mul_bits) else: print(self.n, other) return NotImplemented def __lshift__(self, i): return self.bit_compose([sbit(0)] * i + self.bit_decompose()[:self.max_length-i]) def __invert__(self): res = type(self)(n=self.n) inst.nots(self.n, res, self) return res def __neg__(self): return self def reveal(self): if self.n == None or \ self.n > max(self.max_length, self.clear_type.max_length): assert(self.unit == self.clear_type.unit) res = self.clear_type.get_type(self.n)() inst.reveal(self.n, res, self) return res def equal(self, other, n=None): bits = (~(self + other)).bit_decompose() return reduce(operator.mul, bits) def right_shift(self, m, k, security=None, signed=True): return self.TruncPr(k, m) def TruncPr(self, k, m, kappa=None): if k > self.n: raise Exception('TruncPr overflow: %d > %d' % (k, self.n)) bits = self.bit_decompose() res = self.get_type(k - m).bit_compose(bits[m:k]) return res @classmethod def two_power(cls, n): if n > cls.n: raise Exception('two_power overflow: %d > %d' % (n, cls.n)) res = cls() if n == cls.n: res.load_int(-1 << (n - 1)) else: res.load_int(1 << n) return res def popcnt(self): """ Population count / Hamming weight. :return: :py:obj:`sbits` of required length """ return sbitvec(self).popcnt().elements()[0] @classmethod def trans(cls, rows): rows = list(rows) if len(rows) == 1 and rows[0].n <= rows[0].unit: return rows[0].bit_decompose() n_columns = rows[0].n for row in rows: assert(row.n == n_columns) if n_columns == 1 and len(rows) <= cls.unit: return [cls.bit_compose(rows)] else: res = [cls.new(n=len(rows)) for i in range(n_columns)] inst.trans(len(res), *(res + rows)) return res @staticmethod def bit_adder(*args, **kwargs): return sbitint.bit_adder(*args, **kwargs) @staticmethod def ripple_carry_adder(*args, **kwargs): return sbitint.ripple_carry_adder(*args, **kwargs) def to_sint(self, n_bits): """ Convert the :py:obj:`n_bits` least significant bits to :py:obj:`~Compiler.types.sint`. """ bits = sbitvec.from_vec(sbitvec([self]).v[:n_bits]).elements()[0] bits = sint(bits, size=n_bits) return sint.bit_compose(bits) class sbitvec(_vec): """ Vector of registers of secret bits, effectively a matrix of secret bits. This facilitates parallel arithmetic operations in binary circuits. Container types are not supported, use :py:obj:`sbitvec.get_type` for that. You can access the rows by member :py:obj:`v` and the columns by calling :py:obj:`elements`. There are three ways to create an instance: 1. By transposition:: sb32 = sbits.get_type(32) x = sbitvec([sb32(5), sb32(3), sb32(0)]) print_ln('%s', [x.v[0].reveal(), x.v[1].reveal(), x.v[2].reveal()]) print_ln('%s', [x.elements()[0].reveal(), x.elements()[1].reveal()]) This should output:: [3, 2, 1] [5, 3] 2. Without transposition:: sb32 = sbits.get_type(32) x = sbitvec.from_vec([sb32(5), sb32(3)]) print_ln('%s', [x.v[0].reveal(), x.v[1].reveal()]) This should output:: [5, 3] 3. From :py:obj:`~Compiler.types.sint`:: y = sint(5) x = sbitvec(y, 3, 3) print_ln('%s', [x.v[0].reveal(), x.v[1].reveal(), x.v[2].reveal()]) This should output:: [1, 0, 1] """ bit_extend = staticmethod(lambda v, n: v[:n] + [0] * (n - len(v))) @classmethod def get_type(cls, n): """ Create type for fixed-length vector of registers of secret bits. As with :py:obj:`sbitvec`, you can access the rows by member :py:obj:`v` and the columns by calling :py:obj:`elements`. """ class sbitvecn(cls, _structure): @staticmethod def malloc(size, creator_tape=None): return sbit.malloc(size * n, creator_tape=creator_tape) @staticmethod def n_elements(): return n @classmethod def get_input_from(cls, player): """ Secret input from :py:obj:`player`. The input is decomposed into bits. :param: player (int) """ res = cls.from_vec(sbit() for i in range(n)) inst.inputbvec(n + 3, 0, player, *res.v) return res get_raw_input_from = get_input_from @classmethod def from_vec(cls, vector): res = cls() res.v = _complement_two_extend(list(vector), n)[:n] return res def __init__(self, other=None, size=None): assert size in (None, 1) if other is not None: if util.is_constant(other): self.v = [sbit((other >> i) & 1) for i in range(n)] elif isinstance(other, _vec): self.v = self.bit_extend(other.v, n) elif isinstance(other, (list, tuple)): self.v = self.bit_extend(sbitvec(other).v, n) else: self.v = sbits.get_type(n)(other).bit_decompose() assert len(self.v) == n @classmethod def load_mem(cls, address): if not isinstance(address, int) and len(address) == n: return cls.from_vec(sbit.load_mem(x) for x in address) else: return cls.from_vec(sbit.load_mem(address + i) for i in range(n)) def store_in_mem(self, address): for x in self.v: assert util.is_constant(x) or x.n == 1 v = [sbit.conv(x) for x in self.v] if not isinstance(address, int) and len(address) == n: for x, y in zip(v, address): x.store_in_mem(y) else: for i in range(n): v[i].store_in_mem(address + i) def reveal(self): if len(self) > cbits.unit: return self.elements()[0].reveal() revealed = [cbit() for i in range(len(self))] for i in range(len(self)): try: inst.reveal(1, revealed[i], self.v[i]) except: revealed[i] = cbit.conv(self.v[i]) return cbits.get_type(len(self)).bit_compose(revealed) @classmethod def two_power(cls, nn): return cls.from_vec([0] * nn + [1] + [0] * (n - nn - 1)) def coerce(self, other): if util.is_constant(other): return self.from_vec(util.bit_decompose(other, n)) else: return super(sbitvecn, self).coerce(other) @classmethod def bit_compose(cls, bits): bits = list(bits) if len(bits) < n: bits += [0] * (n - len(bits)) assert len(bits) == n return cls.from_vec(bits) def __str__(self): return 'sbitvec(%d)' % n return sbitvecn @classmethod def from_vec(cls, vector): res = cls() res.v = list(vector) return res compose = from_vec @classmethod def combine(cls, vectors): res = cls() res.v = sum((vec.v for vec in vectors), []) return res @classmethod def from_matrix(cls, matrix): # any number of rows, limited number of columns return cls.combine(cls(row) for row in matrix) def __init__(self, elements=None, length=None, input_length=None): if length: assert isinstance(elements, sint) if Program.prog.use_split(): x = elements.split_to_two_summands(length) v = sbitint.carry_lookahead_adder(x[0], x[1], fewer_inv=True) else: prog = Program.prog if not prog.options.ring: # force the use of edaBits backup = prog.use_edabit() prog.use_edabit(True) from Compiler.floatingpoint import BitDecFieldRaw self.v = BitDecFieldRaw(elements, input_length or prog.bit_length, length, prog.security) prog.use_edabit(backup) return l = int(Program.prog.options.ring) r, r_bits = sint.get_edabit(length, size=elements.size) c = ((elements - r) << (l - length)).reveal() c >>= l - length cb = [(c >> i) for i in range(length)] x = sbitintvec.from_vec(r_bits) + sbitintvec.from_vec(cb) v = x.v self.v = v[:length] elif elements is not None and not (util.is_constant(elements) and \ elements == 0): self.v = sbits.trans(elements) def popcnt(self): """ Population count / Hamming weight. :return: :py:obj:`sbitintvec` of required length """ res = sbitint.wallace_tree([[b] for b in self.v]) while util.is_zero(res[-1]): del res[-1] return sbitintvec.get_type(len(res)).from_vec(res) def elements(self, start=None, stop=None): if stop is None: start, stop = stop, start return sbits.trans(self.v[start:stop]) def coerce(self, other): if isinstance(other, cint): size = other.size return (other.get_vector(base, min(64, size - base)) \ for base in range(0, size, 64)) return other def __xor__(self, other): other = self.coerce(other) return self.from_vec(x ^ y for x, y in zip(self.v, other)) def __and__(self, other): return self.from_vec(x & y for x, y in zip(self.v, other.v)) def if_else(self, x, y): assert(len(self.v) == 1) try: return self.from_vec(util.if_else(self.v[0], a, b) \ for a, b in zip(x, y)) except: return util.if_else(self.v[0], x, y) def __iter__(self): return iter(self.v) def __len__(self): return len(self.v) def __getitem__(self, index): return self.v[index] @classmethod def conv(cls, other): if isinstance(other, cls): return cls.from_vec(other.v) else: return cls(other) @property def size(self): if not self.v or util.is_constant(self.v[0]): return 1 else: return self.v[0].n @property def n_bits(self): return len(self.v) def store_in_mem(self, address): for i, x in enumerate(self.elements()): x.store_in_mem(address + i) def bit_decompose(self, n_bits=None, security=None): return self.v[:n_bits] bit_compose = from_vec def reveal(self): assert len(self) == 1 return self.v[0].reveal() def long_one(self): return [x.long_one() for x in self.v] def __rsub__(self, other): return self.from_vec(y - x for x, y in zip(self.v, other)) def half_adder(self, other): other = self.coerce(other) res = zip(*(x.half_adder(y) for x, y in zip(self.v, other))) return (self.from_vec(x) for x in res) def __mul__(self, other): if isinstance(other, int): return self.from_vec(x * other for x in self.v) def __add__(self, other): return self.from_vec(x + y for x, y in zip(self.v, other)) def bit_and(self, other): return self & other def bit_xor(self, other): return self ^ other def right_shift(self, m, k, security=None, signed=True): return self.from_vec(self.v[m:]) class bit(object): n = 1 def result_conv(x, y): try: def f(res): try: return t.conv(res) except: return res if util.is_constant(x): if util.is_constant(y): return lambda x: x else: t = type(y) return f if util.is_constant(y): t = type(x) return f if type(x) is type(y): t = type(x) return f except AttributeError: pass return lambda x: x class sbit(bit, sbits): """ Single secret bit. """ def if_else(self, x, y): """ Non-vectorized oblivious selection:: sb32 = sbits.get_type(32) print_ln('%s', sbit(1).if_else(sb32(5), sb32(2)).reveal()) This will output 5. """ assert self.n == 1 diff = x ^ y if isinstance(diff, cbits): return result_conv(x, y)(self & (diff) ^ y) else: return result_conv(x, y)(self * (diff) ^ y) class cbit(bit, cbits): pass sbits.bit_type = sbit cbits.bit_type = cbit sbit.clear_type = cbit class bitsBlock(oram.Block): value_type = sbits def __init__(self, value, start, lengths, entries_per_block): oram.Block.__init__(self, value, lengths) length = sum(self.lengths) used_bits = entries_per_block * length self.value_bits = self.value.bit_decompose(used_bits) start_length = util.log2(entries_per_block) self.start_bits = util.bit_decompose(start, start_length) self.start_demux = oram.demux_list(self.start_bits) self.entries = [sbits.bit_compose(self.value_bits[i*length:][:length]) \ for i in range(entries_per_block)] self.mul_entries = list(map(operator.mul, self.start_demux, self.entries)) self.bits = sum(self.mul_entries).bit_decompose() self.mul_value = sbits.compose(self.mul_entries, sum(self.lengths)) self.anti_value = self.mul_value + self.value def set_slice(self, value): value = sbits.compose(util.tuplify(value), sum(self.lengths)) for i,b in enumerate(self.start_bits): value = b.if_else(value << (2**i * sum(self.lengths)), value) self.value = value + self.anti_value return self oram.block_types[sbits] = bitsBlock class dyn_sbits(sbits): pass class DynamicArray(Array): def __init__(self, *args): Array.__init__(self, *args) def _malloc(self): return Program.prog.malloc(self.length, 'sd', self.value_type) def _load(self, address): return self.value_type.load_dynamic_mem(cbits.conv(address)) def _store(self, value, address): if isinstance(value, MemValue): value = value.read() if isinstance(value, sbits): self.value_type.conv(value).store_in_dynamic_mem(address) else: cbits.conv(value).store_in_dynamic_mem(address) sbits.dynamic_array = DynamicArray cbits.dynamic_array = Array def _complement_two_extend(bits, k): return bits + [bits[-1]] * (k - len(bits)) class _sbitintbase: def extend(self, n): bits = self.bit_decompose() bits += [bits[-1]] * (n - len(bits)) return self.get_type(n).bit_compose(bits) def cast(self, n): bits = self.bit_decompose()[:n] bits += [bits[-1]] * (n - len(bits)) return self.get_type(n).bit_compose(bits) def round(self, k, m, kappa=None, nearest=None, signed=None): bits = self.bit_decompose() if signed: bits += [bits[-1]] * (k - len(bits)) res_bits = self.bit_adder(bits[m:k], [bits[m-1]]) return self.get_type(k - m).compose(res_bits) def int_div(self, other, bit_length=None): k = bit_length or max(self.n, other.n) return (library.IntDiv(self.cast(k), other.cast(k), k) >> k).cast(k) def Norm(self, k, f, kappa=None, simplex_flag=False): absolute_val = abs(self) #next 2 lines actually compute the SufOR for little indian encoding bits = absolute_val.bit_decompose(k)[::-1] suffixes = floatingpoint.PreOR(bits)[::-1] z = [0] * k for i in range(k - 1): z[i] = suffixes[i] - suffixes[i+1] z[k - 1] = suffixes[k-1] z.reverse() t2k = self.get_type(2 * k) acc = t2k.bit_compose(z) sign = self.bit_decompose()[-1] signed_acc = util.if_else(sign, -acc, acc) absolute_val_2k = t2k.bit_compose(absolute_val.bit_decompose()) part_reciprocal = absolute_val_2k * acc return part_reciprocal, signed_acc def pow2(self, k): l = int(math.ceil(math.log(k, 2))) bits = [self.equal(i, l) for i in range(k)] return self.get_type(k).bit_compose(bits) class sbitint(_bitint, _number, sbits, _sbitintbase): """ Secret signed integer in one binary register. Use :py:obj:`get_type()` to specify the bit length:: si32 = sbitint.get_type(32) print_ln('add: %s', (si32(5) + si32(3)).reveal()) print_ln('sub: %s', (si32(5) - si32(3)).reveal()) print_ln('mul: %s', (si32(5) * si32(3)).reveal()) print_ln('lt: %s', (si32(5) < si32(3)).reveal()) This should output:: add: 8 sub: 2 mul: 15 lt: 0 """ n_bits = None bin_type = None types = {} vector_mul = True @classmethod def get_type(cls, n, other=None): """ Returns a signed integer type with fixed length. :param n: length """ if isinstance(other, sbitvec): return sbitvec if n in cls.types: return cls.types[n] sbits_type = sbits.get_type(n) class _(sbitint, sbits_type): # n_bits is used by _bitint n_bits = n bin_type = sbits_type _.__name__ = 'sbitint' + str(n) cls.types[n] = _ return _ @classmethod def combo_type(cls, other): if isinstance(other, sbitintvec): return sbitintvec else: return cls @classmethod def new(cls, value=None, n=None): return cls.get_type(n)(value) def set_length(*args): pass @classmethod def bit_compose(cls, bits): # truncate and extend bits bits = list(bits)[:cls.n] bits += [0] * (cls.n - len(bits)) return super(sbitint, cls).bit_compose(bits) def force_bit_decompose(self, n_bits=None): return sbits.bit_decompose(self, n_bits) def TruncMul(self, other, k, m, kappa=None, nearest=False): if nearest: raise CompilerError('round to nearest not implemented') self_bits = self.bit_decompose() other_bits = other.bit_decompose() if len(self_bits) + len(other_bits) > k: raise Exception('invalid parameters for TruncMul: ' 'self:%d, other:%d, k:%d' % (len(self_bits), len(other_bits), k)) t = self.get_type(k) a = t.bit_compose(self_bits + [self_bits[-1]] * (k - len(self_bits))) t = other.get_type(k) b = t.bit_compose(other_bits + [other_bits[-1]] * (k - len(other_bits))) product = a * b res_bits = product.bit_decompose()[m:k] res_bits += [res_bits[-1]] * (self.n - len(res_bits)) t = self.combo_type(other).get_type(k - m) return t.bit_compose(res_bits) def __mul__(self, other): if isinstance(other, sbitintvec): return other * self else: return super(sbitint, self).__mul__(other) @classmethod def get_bit_matrix(cls, self_bits, other): n = len(self_bits) assert n == other.n res = [] for i, bit in enumerate(self_bits): if util.is_zero(bit): res.append([0] * (n - i)) else: if cls.vector_mul: x = sbits.get_type(n - i)() inst.andrs(n - i, x, other, bit) res.append(x.bit_decompose(n - i)) else: res.append([(x & bit) for x in other.bit_decompose(n - i)]) return res @classmethod def popcnt_bits(cls, bits): res = sbitintvec.popcnt_bits(bits).elements()[0] res = cls.conv(res) return res def pow2(self, k): """ Computer integer power of two. :param k: bit length of input """ return _sbitintbase.pow2(self, k) class sbitintvec(sbitvec, _number, _bitint, _sbitintbase): """ Vector of signed integers for parallel binary computation:: sb32 = sbits.get_type(32) siv32 = sbitintvec.get_type(32) a = siv32([sb32(3), sb32(5)]) b = siv32([sb32(4), sb32(6)]) c = (a + b).elements() print_ln('add: %s, %s', c[0].reveal(), c[1].reveal()) c = (a * b).elements() print_ln('mul: %s, %s', c[0].reveal(), c[1].reveal()) c = (a - b).elements() print_ln('sub: %s, %s', c[0].reveal(), c[1].reveal()) c = (a < b).bit_decompose() print_ln('lt: %s, %s', c[0].reveal(), c[1].reveal()) This should output:: add: 7, 11 mul: 12, 30 sub: -1, 11 lt: 1, 1 """ bit_extend = staticmethod(_complement_two_extend) @classmethod def popcnt_bits(cls, bits): return sbitvec.from_vec(bits).popcnt() def elements(self): return [sbitint.get_type(len(self.v))(x) for x in sbitvec.elements(self)] def __add__(self, other): if util.is_zero(other): return self other = self.coerce(other) assert(len(self.v) == len(other.v)) v = sbitint.bit_adder(self.v, other.v) return self.from_vec(v) __radd__ = __add__ def __mul__(self, other): if isinstance(other, sbits): return self.from_vec(other * x for x in self.v) elif isinstance(other, sbitfixvec): return NotImplemented matrix = [] for i, b in enumerate(util.bit_decompose(other)): matrix.append([x & b for x in self.v[:len(self.v)-i]]) v = sbitint.wallace_tree_from_matrix(matrix) return self.from_vec(v[:len(self.v)]) __rmul__ = __mul__ reduce_after_mul = lambda x: x def TruncMul(self, other, k, m, kappa=None, nearest=False): if nearest: raise CompilerError('round to nearest not implemented') if not isinstance(other, sbitintvec): other = sbitintvec(other) assert len(self.v) + len(other.v) <= k a = self.get_type(k).from_vec(_complement_two_extend(self.v, k)) b = self.get_type(k).from_vec(_complement_two_extend(other.v, k)) tmp = a * b assert len(tmp.v) == k return self.get_type(k - m).from_vec(tmp[m:]) def pow2(self, k): """ Computer integer power of two. :param k: bit length of input """ return _sbitintbase.pow2(self, k) sbitint.vec = sbitintvec class cbitfix(object): malloc = staticmethod(lambda *args: cbits.malloc(*args)) n_elements = staticmethod(lambda: 1) conv = staticmethod(lambda x: x) load_mem = classmethod(lambda cls, *args: cls._new(cbits.load_mem(*args))) store_in_mem = lambda self, *args: self.v.store_in_mem(*args) @classmethod def _new(cls, value): res = cls() res.v = value return res def output(self): v = self.v if self.k < v.unit: bits = self.v.bit_decompose(self.k) sign = bits[-1] v += (sign << (self.k)) * -1 inst.print_float_plainb(v, cbits.get_type(32)(-self.f), cbits(0), cbits(0), cbits(0)) class sbitfix(_fix): """ Secret signed integer in one binary register. Use :py:obj:`set_precision()` to change the precision. Example:: print_ln('add: %s', (sbitfix(0.5) + sbitfix(0.3)).reveal()) print_ln('mul: %s', (sbitfix(0.5) * sbitfix(0.3)).reveal()) print_ln('sub: %s', (sbitfix(0.5) - sbitfix(0.3)).reveal()) print_ln('lt: %s', (sbitfix(0.5) < sbitfix(0.3)).reveal()) will output roughly:: add: 0.800003 mul: 0.149994 sub: 0.199997 lt: 0 """ float_type = type(None) clear_type = cbitfix @classmethod def set_precision(cls, f, k=None): super(sbitfix, cls).set_precision(f, k) cls.int_type = sbitint.get_type(cls.k) @classmethod def load_mem(cls, address, size=None): if size not in (None, 1): v = [cls.int_type.load_mem(address + i) for i in range(size)] return sbitfixvec._new(sbitintvec(v)) else: return super(sbitfix, cls).load_mem(address) @classmethod def get_input_from(cls, player): """ Secret input from :py:obj:`player`. :param: player (int) """ v = cls.int_type() inst.inputb(player, cls.k, cls.f, v) return cls._new(v) def __xor__(self, other): return type(self)._new(self.v ^ other.v) def __mul__(self, other): if isinstance(other, sbit): return type(self)._new(self.int_type(other * self.v)) elif isinstance(other, sbitfixvec): return other * self else: return super(sbitfix, self).__mul__(other) __rxor__ = __xor__ __rmul__ = __mul__ @staticmethod def multipliable(other, k, f, size): class cls(_fix): int_type = sbitint.get_type(k) clear_type = cbitfix cls.set_precision(f, k) return cls._new(cls.int_type(other), k, f) class sbitfixvec(_fix): """ Vector of fixed-point numbers for parallel binary computation. Use :py:obj:`set_precision()` to change the precision. Example:: a = sbitfixvec([sbitfix(0.3), sbitfix(0.5)]) b = sbitfixvec([sbitfix(0.4), sbitfix(0.6)]) c = (a + b).elements() print_ln('add: %s, %s', c[0].reveal(), c[1].reveal()) c = (a * b).elements() print_ln('mul: %s, %s', c[0].reveal(), c[1].reveal()) c = (a - b).elements() print_ln('sub: %s, %s', c[0].reveal(), c[1].reveal()) c = (a < b).bit_decompose() print_ln('lt: %s, %s', c[0].reveal(), c[1].reveal()) This should output roughly:: add: 0.699997, 1.10001 mul: 0.119995, 0.300003 sub: -0.0999908, -0.100021 lt: 1, 1 """ int_type = sbitintvec.get_type(sbitfix.k) float_type = type(None) clear_type = cbitfix @classmethod def set_precision(cls, f, k=None): super(sbitfixvec, cls).set_precision(f=f, k=k) cls.int_type = sbitintvec.get_type(cls.k) @classmethod def get_input_from(cls, player): """ Secret input from :py:obj:`player`. :param: player (int) """ v = [sbit() for i in range(sbitfix.k)] inst.inputbvec(len(v) + 3, sbitfix.f, player, *v) return cls._new(cls.int_type.from_vec(v)) def __init__(self, value=None, *args, **kwargs): if isinstance(value, (list, tuple)): self.v = self.int_type.from_vec(sbitvec([x.v for x in value])) else: super(sbitfixvec, self).__init__(value, *args, **kwargs) def elements(self): return [sbitfix._new(x, f=self.f, k=self.k) for x in self.v.elements()] def mul(self, other): if isinstance(other, sbits): return self._new(self.v * other) else: return super(sbitfixvec, self).mul(other) def __xor__(self, other): return self._new(self.v ^ other.v) @staticmethod def multipliable(other, k, f, size): class cls(_fix): int_type = sbitint.get_type(k) clear_type = cbitfix cls.set_precision(f, k) return cls._new(cls.int_type(other), k, f) sbitfix.set_precision(16, 31) sbitfixvec.set_precision(16, 31) sbitfix.vec = sbitfixvec class cbitfloat: def __init__(self, v, p, z, s, nan=0): self.v, self.p, self.z, self.s, self.nan = v, p, z, s, cbit.conv(nan) def output(self): inst.print_float_plainb(self.v, self.p, self.z, self.s, self.nan)