Files
MP-SPDZ/Compiler/graph.py
2021-07-09 13:47:08 +02:00

218 lines
7.0 KiB
Python

import heapq
import collections
from Compiler.exceptions import *
class GraphError(CompilerError):
pass
class SparseDiGraph(object):
""" Directed graph suitable when each node only has a small number of edges.
Edges are stored as a list instead of a dictionary to save memory, leading
to slower searching for dense graphs.
Node attributes must be specified in advance, as these are stored in the
same list as edges.
"""
def __init__(self, max_nodes, default_attributes=None):
""" max_nodes: maximum no of nodes
default_attributes: dict of node attributes and default values """
if default_attributes is None:
default_attributes = { 'merges': None }
self.default_attributes = default_attributes
self.attribute_pos = dict(list(zip(list(default_attributes.keys()), list(range(len(default_attributes))))))
self.n = max_nodes
# each node contains list of default attributes, followed by outgoing edges
self.nodes = [list(self.default_attributes.values()) for i in range(self.n)]
self.succ = [collections.OrderedDict() for i in range(self.n)]
self.pred = [set() for i in range(self.n)]
self.weights = {}
def __len__(self):
return self.n
def __getitem__(self, i):
""" Get list of the neighbours of node i """
return self.succ[i].keys()
def __iter__(self):
pass #return iter(self.nodes)
def __contains__(self, i):
return i >= 0 and i < self.n
def add_node(self, i, **attr):
if i >= self.n:
raise CompilerError('Cannot add node %d to graph of size %d' % (i, self.n))
node = self.nodes[i]
for a,value in list(attr.items()):
if a in self.default_attributes:
node[self.attribute_pos[a]] = value
else:
raise CompilerError('Invalid attribute %s for graph node' % a)
def set_attr(self, i, attr, value):
if attr in self.default_attributes:
self.nodes[i][self.attribute_pos[attr]] = value
else:
raise CompilerError('Invalid attribute %s for graph node' % attr)
def get_attr(self, i, attr):
return self.nodes[i][self.attribute_pos[attr]]
def remove_node(self, i):
""" Remove node i and all its edges """
succ = self[i]
pred = self.pred[i]
for v in succ:
self.pred[v].remove(i)
#del self.weights[(i,v)]
for v in pred:
del self.succ[v][i]
#del self.weights[(v,i)]
#self.nodes[v].remove(i)
self.pred[i] = []
self.nodes[i] = list(self.default_attributes.values())
def add_edge(self, i, j, weight=1):
if j not in self[i]:
self.pred[j].add(i)
self.succ[i][j] = None
self.weights[(i,j)] = weight
def add_edges_from(self, tuples):
for edge in tuples:
if len(edge) == 3:
# use weight
self.add_edge(edge[0], edge[1], edge[2])
else:
self.add_edge(edge[0], edge[1])
def remove_edge(self, i, j):
del self.succ[i][j]
self.pred[j].remove(i)
del self.weights[(i,j)]
def remove_edges_from(self, pairs):
for i,j in pairs:
self.remove_edge(i, j)
def degree(self, i):
return len(self.succ[i])
def topological_sort(G, nbunch=None, pref=None):
seen={}
order_explored=[] # provide order and
explored={} # fast search without more general priorityDictionary
if pref is None:
def get_children(node):
return G[node]
else:
def get_children(node):
if node in pref:
pref_set = set(pref[node])
for i in G[node]:
if i not in pref_set:
yield i
for i in reversed(pref[node]):
yield i
else:
for i in G[node]:
yield i
if nbunch is None:
nbunch = reversed(list(range(len(G))))
for v in nbunch: # process all vertices in G
if v in explored:
continue
fringe=[v] # nodes yet to look at
while fringe:
w=fringe[-1] # depth first search
if w in explored: # already looked down this branch
fringe.pop()
continue
seen[w]=1 # mark as seen
# Check successors for cycles and for new nodes
new_nodes=[]
for n in get_children(w):
if n not in explored:
if n in seen: #CYCLE !!
raise GraphError("Graph contains a cycle at %d (%s,%s)." % \
(n, G[n], G.pred[n]))
new_nodes.append(n)
if new_nodes: # Add new_nodes to fringe
fringe.extend(new_nodes)
else: # No new nodes so w is fully explored
explored[w]=1
order_explored.append(w)
fringe.pop() # done considering this node
order_explored.reverse() # reverse order explored
return order_explored
def dag_shortest_paths(G, source):
top_order = topological_sort(G)
dist = [None] * len(G)
dist[source] = 0
for u in top_order:
if dist[u] is None:
continue
for v in G[u]:
if dist[v] is None or dist[v] > dist[u] + G.weights[(u,v)]:
dist[v] = dist[u] + G.weights[(u,v)]
return dist
def reverse_dag_shortest_paths(G, source):
top_order = reversed(topological_sort(G))
dist = [None] * len(G)
dist[source] = 0
for u in top_order:
if u ==68273:
print('dist[68273]', dist[u])
print('pred[u]', G.pred[u])
if dist[u] is None:
continue
for v in G.pred[u]:
if dist[v] is None or dist[v] > dist[u] + G.weights[(v,u)]:
dist[v] = dist[u] + G.weights[(v,u)]
return dist
def single_source_longest_paths(G, source, reverse=False):
# make weights negative, then do shortest paths
for edge in G.weights:
G.weights[edge] = -G.weights[edge]
if reverse:
dist = reverse_dag_shortest_paths(G, source)
else:
dist = dag_shortest_paths(G, source)
#dist = johnson(G, sources)
# reset weights
for edge in G.weights:
G.weights[edge] = -G.weights[edge]
for i,n in enumerate(dist):
if n is None:
dist[i] = 0
else:
dist[i] = -dist[i]
#for k, v in dist.iteritems():
# dist[k] = -v
return dist
def longest_paths(G, sources=None):
# make weights negative, then do shortest paths
for edge in G.weights:
G.weights[edge] = -G.weights[edge]
dist = {}
for source in sources:
print(('%s, ' % source), end=' ')
dist[source] = dag_shortest_paths(G, source)
#dist = johnson(G, sources)
# reset weights
for edge in G.weights:
G.weights[edge] = -G.weights[edge]
return dist