Files
MP-SPDZ/Processor/Instruction.hpp
2025-12-24 13:47:42 +11:00

1605 lines
40 KiB
C++

#ifndef PROCESSOR_INSTRUCTION_HPP_
#define PROCESSOR_INSTRUCTION_HPP_
#include "Processor/Instruction.h"
#include "Processor/Machine.h"
#include "Processor/Processor.h"
#include "Processor/IntInput.h"
#include "Processor/FixInput.h"
#include "Processor/FloatInput.h"
#include "Processor/instructions.h"
#include "Tools/Exceptions.h"
#include "Tools/time-func.h"
#include "Tools/parse.h"
#include "GC/Instruction.h"
#include "GC/instructions.h"
#include "Processor/Binary_File_IO.hpp"
#include "Processor/PrivateOutput.hpp"
#include "Math/bigint.hpp"
#include <stdlib.h>
#include <algorithm>
#include <sstream>
#include <map>
#include <iomanip>
#include "Tools/callgrind.h"
inline
void BaseInstruction::parse(istream& s, int inst_pos)
{
n=0; start.resize(0);
r[0]=0; r[1]=0; r[2]=0; r[3]=0;
int pos=s.tellg();
uint64_t code = get_long(s);
size = code >> 10;
opcode = 0x3FF & code;
if (s.fail())
throw bytecode_error("cannot read opcode");
if (size==0)
size=1;
parse_operands(s, inst_pos, pos);
}
inline
void BaseInstruction::parse_operands(istream& s, int pos, int file_pos)
{
int num_var_args = 0;
switch (opcode)
{
// instructions with 3 register operands
case ADDC:
case ADDCB:
case ADDS:
case ADDM:
case SUBC:
case SUBS:
case SUBML:
case SUBMR:
case MULC:
case MULM:
case DIVC:
case MODC:
case FLOORDIVC:
case TRIPLE:
case ANDC:
case XORC:
case ORC:
case SHLC:
case SHRC:
case GADDC:
case GADDS:
case GADDM:
case GSUBC:
case GSUBS:
case GSUBML:
case GSUBMR:
case GMULC:
case GMULM:
case GDIVC:
case GTRIPLE:
case GANDC:
case GXORC:
case GORC:
case LTC:
case GTC:
case EQC:
case ADDINT:
case SUBINT:
case MULINT:
case DIVINT:
case CONDPRINTPLAIN:
case INPUTMASKREG:
case ZIPS:
get_ints(r, s, 3);
break;
// instructions with 2 register operands
case LDMCI:
case LDMSI:
case STMCI:
case STMSI:
case LDMSBI:
case STMSBI:
case LDMCBI:
case STMCBI:
case MOVC:
case MOVS:
case MOVINT:
case LDMINTI:
case STMINTI:
case LEGENDREC:
case SQUARE:
case INV:
case GINV:
case CONVINT:
case GLDMCI:
case GLDMSI:
case GSTMCI:
case GSTMSI:
case GMOVC:
case GMOVS:
case GSQUARE:
case GNOTC:
case GCONVINT:
case GCONVGF2N:
case LTZC:
case EQZC:
case RAND:
case DABIT:
case SHUFFLE:
case ACCEPTCLIENTCONNECTION:
case PREFIXSUMS:
case CMDLINEARG:
get_ints(r, s, 2);
break;
// instructions with 1 register operand
case BIT:
case BITB:
case RANDOMFULLS:
case PRINTREGPLAIN:
case PRINTREGPLAINB:
case PRINTREGPLAINS:
case PRINTREGPLAINSB:
case LDTN:
case LDARG:
case STARG:
case JMPI:
case GBIT:
case GPRINTREGPLAIN:
case GPRINTREGPLAINS:
case JOIN_TAPE:
case PUSHINT:
case POPINT:
case PUBINPUT:
case RAWOUTPUT:
case GRAWOUTPUT:
case PRINTINT:
case NPLAYERS:
case THRESHOLD:
case PLAYERID:
case LISTEN:
case CLOSECLIENTCONNECTION:
case CRASH:
case DELSHUFFLE:
r[0]=get_int(s);
break;
// instructions with 2 registers + 1 integer operand
case ADDCI:
case ADDCBI:
case ADDSI:
case SUBCI:
case SUBSI:
case SUBCFI:
case SUBSFI:
case MULCI:
case MULCBI:
case MULSI:
case DIVCI:
case MODCI:
case ANDCI:
case XORCI:
case XORCBI:
case ORCI:
case SHLCI:
case SHRCI:
case SHRSI:
case SHLCBI:
case SHRCBI:
case NOTC:
case GADDCI:
case GADDSI:
case GSUBCI:
case GSUBSI:
case GSUBCFI:
case GSUBSFI:
case GMULCI:
case GMULSI:
case GDIVCI:
case GANDCI:
case GXORCI:
case GORCI:
case GSHLCI:
case GSHRCI:
case GSHRSI:
case DIGESTC:
case INPUTMASK:
case GINPUTMASK:
case SECSHUFFLE:
case GSECSHUFFLE:
get_ints(r, s, 2);
n = get_int(s);
break;
case PICKS:
case CONVMODP:
get_ints(r, s, 3);
n = get_int(s);
break;
case USE:
case USE_INP:
case USE_EDABIT:
get_ints(r, s, 2);
n = get_long(s);
break;
case STARTPRIVATEOUTPUT:
case GSTARTPRIVATEOUTPUT:
case STOPPRIVATEOUTPUT:
case GSTOPPRIVATEOUTPUT:
throw runtime_error("two-stage private output not supported any more");
case USE_MATMUL:
get_ints(r, s, 3);
n = get_long(s);
break;
// instructions with 1 register + 1 integer operand
case LDI:
case LDSI:
case JMPNZ:
case JMPEQZ:
case GLDI:
case GLDSI:
case PRINTREG:
case PRINTREGB:
case GPRINTREG:
case LDINT:
case INV2M:
case CONDPRINTSTR:
case CONDPRINTSTRB:
case RANDOMS:
case GENSECSHUFFLE:
case CALL_ARG:
r[0]=get_int(s);
n = get_int(s);
break;
// instructions with 1 register + 1 long operand
case LDMC:
case LDMS:
case STMC:
case STMS:
case LDMSB:
case STMSB:
case LDMCB:
case STMCB:
case LDMINT:
case STMINT:
case GLDMC:
case GLDMS:
case GSTMC:
case GSTMS:
r[0] = get_int(s);
n = get_long(s);
break;
// instructions with 1 integer operand
case PRINTSTR:
case PRINTCHR:
case JMP:
case START:
case STOP:
case PRINTFLOATPREC:
n = get_int(s);
break;
// instructions with no operand
case TIME:
case STARTGRIND:
case STOPGRIND:
case CHECK:
break;
// instructions with 5 register operands
case PRINTFLOATPLAIN:
case PRINTFLOATPLAINB:
get_vector(5, start, s);
break;
case INCINT:
r[0]=get_int(s);
r[1]=get_int(s);
n = get_int(s);
get_vector(2, start, s);
break;
// instructions with 2 register operands
case INVPERM:
get_vector(2, start, s);
break;
// open instructions + read/write instructions with variable length args
case MULS:
case GMULS:
case MULRS:
case GMULRS:
case DOTPRODS:
case GDOTPRODS:
case INPUT:
case GINPUT:
case INPUTFIX:
case INPUTFLOAT:
case INPUTMIXED:
case INPUTMIXEDREG:
case RAWINPUT:
case GRAWINPUT:
case INPUTPERSONAL:
case SENDPERSONAL:
case PRIVATEOUTPUT:
case TRUNC_PR:
case RUN_TAPE:
case CONV2DS:
case MATMULS:
case GMATMULS:
case APPLYSHUFFLE:
case MATMULSM:
case GMATMULSM:
num_var_args = get_int(s);
get_vector(num_var_args, start, s);
break;
// read from file, input is opcode num_args,
// start_file_posn (read), end_file_posn(write) var1, var2, ...
case READFILESHARE:
case GREADFILESHARE:
case CALL_TAPE:
num_var_args = get_int(s) - 2;
r[0] = get_int(s);
r[1] = get_int(s);
get_vector(num_var_args, start, s);
break;
// read from external client, input is : opcode num_args, client_id, var1, var2 ...
case READSOCKETC:
case READSOCKETS:
case READSOCKETINT:
num_var_args = get_int(s) - 2;
r[0] = get_int(s);
n = get_int(s);
get_vector(num_var_args, start, s);
break;
// write to external client, input is : opcode num_args, client_id, message_type, var1, var2 ...
case WRITESOCKETC:
case WRITESOCKETS:
case WRITESOCKETSHARE:
case WRITESOCKETINT:
num_var_args = get_int(s) - 3;
r[0] = get_int(s);
r[1] = get_int(s);
n = get_int(s);
get_vector(num_var_args, start, s);
break;
case INITCLIENTCONNECTION:
get_ints(r, s, 3);
get_string(str, s);
break;
case INITSECURESOCKET:
case RESPSECURESOCKET:
throw runtime_error("VM-controlled encryption not supported any more");
// raw input
case STARTINPUT:
case GSTARTINPUT:
case STOPINPUT:
case GSTOPINPUT:
throw runtime_error("two-stage input not supported any more");
case PRINTMEM:
case GPRINTMEM:
throw runtime_error("memory printing not supported any more");
case PRINTCHRINT:
case PRINTSTRINT:
throw runtime_error("run-time printing not supported any more");
case PROTECTMEMS:
case PROTECTMEMC:
case GPROTECTMEMS:
case GPROTECTMEMC:
case PROTECTMEMINT:
throw runtime_error("memory protection not supported any more");
case GBITTRIPLE:
case GBITGF2NTRIPLE:
case GMULBITC:
case GMULBITM:
throw runtime_error("GF(2^n) bit operations not supported any more");
case GBITDEC:
case GBITCOM:
num_var_args = get_int(s) - 2;
r[0] = get_int(s);
n = get_int(s);
get_vector(num_var_args, start, s);
break;
case BITDECINT:
case EDABIT:
case SEDABIT:
case WRITEFILESHARE:
case GWRITEFILESHARE:
case CONCATS:
case UNSPLIT:
num_var_args = get_int(s) - 1;
r[0] = get_int(s);
get_vector(num_var_args, start, s);
break;
case PREP:
case GPREP:
case CISC:
// subtract extra argument
num_var_args = get_int(s) - 1;
s.read((char*)r, sizeof(r));
get_vector(num_var_args, start, s);
break;
case USE_PREP:
case GUSE_PREP:
s.read((char*)r, sizeof(r));
n = get_long(s);
break;
case REQBL:
n = get_int(s);
BaseMachine::s().reqbl(n);
break;
case GREQBL:
n = get_int(s);
if (n > 0 && gf2n::degree() < int(n))
{
stringstream ss;
ss << "Tape requires prime of bit length " << n << endl;
throw Processor_Error(ss.str());
}
break;
case ACTIVE:
n = get_int(s);
BaseMachine::s().active(n);
break;
case XORM:
case ANDM:
case XORCB:
case FIXINPUT:
n = get_int(s);
get_ints(r, s, 3);
break;
case LDBITS:
get_ints(r, s, 2);
n = get_int(s);
break;
case BITDECS:
case BITCOMS:
case BITDECC:
case CONVCINTVEC:
num_var_args = get_int(s) - 1;
get_ints(r, s, 1);
get_vector(num_var_args, start, s);
break;
case CONVCINT:
case CONVCBIT:
get_ints(r, s, 2);
break;
case CONVSINT:
case CONVCBITVEC:
case CONVCBIT2S:
case NOTS:
case NOTCB:
case MOVSB:
n = get_int(s);
get_ints(r, s, 2);
break;
case LDMSDI:
case STMSDI:
case LDMSD:
case STMSD:
case STMSDCI:
case XORS:
case ANDRS:
case ANDRSVEC:
case ANDS:
case INPUTB:
case INPUTBVEC:
case REVEAL:
get_vector(get_int(s), start, s);
break;
case PRINTREGSIGNED:
case INTOUTPUT:
n = get_int(s);
get_ints(r, s, 1);
break;
case FLOATOUTPUT:
n = get_int(s);
get_vector(4, start, s);
break;
case OPEN:
case GOPEN:
case TRANS:
num_var_args = get_int(s) - 1;
n = get_int(s);
get_vector(num_var_args, start, s);
break;
case SPLIT:
num_var_args = get_int(s) - 2;
n = get_int(s);
get_ints(r, s, 1);
get_vector(num_var_args, start, s);
break;
default:
ostringstream os;
os << "Invalid instruction " << showbase << hex << opcode << " at " << dec
<< pos << "/" << hex << file_pos << dec;
throw Invalid_Instruction(os.str());
}
}
inline
bool Instruction::get_offline_data_usage(DataPositions& usage)
{
switch (opcode)
{
case USE:
if (r[0] >= N_DATA_FIELD_TYPE)
throw invalid_program();
if (r[1] >= N_DTYPE)
throw invalid_program();
usage.files[r[0]][r[1]] = n;
return long(n) >= 0;
case USE_INP:
if (r[0] >= N_DATA_FIELD_TYPE)
throw invalid_program();
if (usage.inputs.size() != 1)
{
if ((unsigned) r[1] >= usage.inputs.size())
throw Processor_Error("Player number too high");
usage.inputs[r[1]][r[0]] = n;
}
return long(n) >= 0;
case USE_EDABIT:
usage.edabits[{r[0], r[1]}] = n;
return long(n) >= 0;
case USE_MATMUL:
usage.matmuls[{{r[0], r[1], r[2]}}] = n;
return long(n) >= 0;
case USE_PREP:
usage.extended[DATA_INT][r] = n;
return long(n) >= 0;
case GUSE_PREP:
usage.extended[gf2n::field_type()][r] = n;
return long(n) >= 0;
default:
return true;
}
}
inline
int BaseInstruction::get_reg_type() const
{
switch (opcode & 0x2B0)
{
case SECRET_WRITE:
return SBIT;
case CLEAR_WRITE:
return CBIT;
}
switch (opcode) {
case LDMINT:
case STMINT:
case LDMINTI:
case STMINTI:
case PUSHINT:
case POPINT:
case MOVINT:
case READSOCKETINT:
case WRITESOCKETINT:
case INITCLIENTCONNECTION:
case INITSECURESOCKET:
case RESPSECURESOCKET:
case LDARG:
case LDINT:
case INCINT:
case SHUFFLE:
case CONVMODP:
case GCONVGF2N:
case RAND:
case NPLAYERS:
case THRESHOLD:
case PLAYERID:
case CONVCBIT:
case CONVCBITVEC:
case INTOUTPUT:
case ACCEPTCLIENTCONNECTION:
case GENSECSHUFFLE:
case CMDLINEARG:
case CALL_TAPE:
return INT;
case PREP:
case GPREP:
case USE_PREP:
case GUSE_PREP:
case USE_EDABIT:
case USE_MATMUL:
case RUN_TAPE:
// those use r[] not for registers
return NONE;
case LDI:
case LDMC:
case STMC:
case LDMCI:
case STMCI:
case MOVC:
case ADDC:
case ADDCI:
case SUBC:
case SUBCI:
case SUBCFI:
case MULC:
case MULCI:
case DIVC:
case DIVCI:
case MODC:
case MODCI:
case LEGENDREC:
case DIGESTC:
case INV2M:
case FLOORDIVC:
case OPEN:
case ANDC:
case XORC:
case ORC:
case ANDCI:
case XORCI:
case ORCI:
case NOTC:
case SHLC:
case SHRC:
case SHLCI:
case SHRCI:
case CONVINT:
case PUBINPUT:
case FLOATOUTPUT:
case READSOCKETC:
case PRIVATEOUTPUT:
case FIXINPUT:
return CINT;
case CALL_ARG:
return n;
default:
if (is_gf2n_instruction())
{
Instruction tmp;
tmp.opcode = opcode - 0x100;
if (tmp.get_reg_type() == CINT)
return CGF2N;
else
return SGF2N;
}
else if (opcode >> 4 == 0x9)
return INT;
else
return SINT;
}
}
inline
unsigned BaseInstruction::get_max_reg(int reg_type) const
{
int skip = 0;
int offset = 0;
int size_offset = 0;
int size = this->size;
bool n_prefix = 0;
// special treatment for instructions writing to different types
switch (opcode)
{
case DABIT:
if (reg_type == SBIT)
return r[1] + size;
else if (reg_type == SINT)
return r[0] + size;
else
return 0;
case EDABIT:
case SEDABIT:
if (reg_type == SBIT)
skip = 1;
else if (reg_type == SINT)
return r[0] + size;
else
return 0;
break;
case INPUTMASKREG:
if (reg_type == SINT)
return r[0] + size;
else if (reg_type == CINT)
return r[1] + size;
else
return 0;
case TRANS:
if (reg_type == SBIT)
{
int n_outputs = n;
auto& args = start;
int n_inputs = args.size() - n_outputs;
long long res = 0;
for (int i = 0; i < n_outputs; i++)
res = max(res, args[i] + DIV_CEIL(n_inputs, 64));
for (int j = 0; j < n_inputs; j++)
res = max(res, args[n_outputs] + DIV_CEIL(n_outputs, 64));
return res;
}
else
return 0;
case CALL_TAPE:
{
int res = 0;
for (auto it = start.begin(); it < start.end(); it += 5)
if (it[1] == reg_type)
res = max(res, (*it ? it[3] : it[4]) + it[2]);
return res;
}
default:
if (get_reg_type() != reg_type)
return 0;
}
switch (opcode)
{
case CISC:
{
int res = 0;
for (auto it = start.begin(); it < start.end(); it += *it)
{
bytecode_assert(it + *it <= start.end());
res = max(res, it[1] + it[2]);
}
return res;
}
case MULS:
case MULRS:
skip = 4;
offset = 1;
size_offset = -1;
break;
case DOTPRODS:
{
int res = 0;
auto it = start.begin();
while (it != start.end())
{
bytecode_assert(it < start.end());
int n = *it;
res = max(res, *++it + size);
it += n - 1;
}
return res;
}
case MATMULS:
case GMATMULS:
{
int res = 0;
for (auto it = start.begin(); it < start.end(); it += 6)
{
int tmp = *it + *(it + 3) * *(it + 5);
res = max(res, tmp);
}
return res;
}
case MATMULSM:
case GMATMULSM:
{
int res = 0;
for (auto it = start.begin(); it < start.end(); it += 12)
{
res = max(res, *it + *(it + 3) * *(it + 5));
}
return res;
}
case CONV2DS:
{
unsigned res = 0;
for (size_t i = 0; i < start.size(); i += 15)
{
unsigned tmp = start[i]
+ start[i + 3] * start[i + 4] * start.at(i + 14);
res = max(res, tmp);
}
return res;
}
case OPEN:
skip = 2;
break;
case LDMSD:
case LDMSDI:
skip = 3;
break;
case STMSD:
case STMSDI:
skip = 2;
break;
case ANDRS:
case XORS:
case ANDS:
skip = 4;
offset = 1;
size_offset = -1;
break;
case ANDRSVEC:
n_prefix = 2;
break;
case INPUTB:
skip = 4;
offset = 3;
size_offset = -2;
break;
case INPUTBVEC:
n_prefix = 3;
break;
case ANDM:
case NOTS:
case NOTCB:
size = DIV_CEIL(n, 64);
break;
case CONVCBIT2S:
size = DIV_CEIL(n, 64);
break;
case CONVCINTVEC:
size = DIV_CEIL(size, 64);
break;
case CONVCBITVEC:
size = n;
break;
case REVEAL:
size = DIV_CEIL(n, 64);
skip = 3;
offset = 1;
size_offset = -1;
break;
case SPLIT:
size = DIV_CEIL(this->size, 64);
skip = 1;
break;
case INPUTPERSONAL:
case PRIVATEOUTPUT:
size_offset = -2;
offset = 2;
skip = 4;
break;
case SENDPERSONAL:
size_offset = -2;
offset = 2;
skip = 5;
break;
case READSOCKETS:
case READSOCKETC:
case READSOCKETINT:
case WRITESOCKETSHARE:
case WRITESOCKETC:
case WRITESOCKETINT:
size = n;
break;
}
if (n_prefix > 0)
{
int res = 0;
auto it = start.begin();
while (it < start.end())
{
int n = *it - n_prefix;
size = max((long long) size, DIV_CEIL(*(it + 1), 64));
it += n_prefix;
bytecode_assert(it + n <= start.end());
for (int i = 0; i < n; i++)
res = max(res, *it++ + size);
}
return res;
}
if (skip > 0)
{
unsigned m = 0;
for (size_t i = offset; i < start.size(); i += skip)
{
if (size_offset != 0)
{
if (opcode & 0x200)
size = DIV_CEIL(start[i + size_offset], 64);
else
size = start[i + size_offset];
}
m = max(m, (unsigned)start[i] + size);
}
return m;
}
unsigned res = 0;
for (auto x : start)
res = max(res, (unsigned)x);
for (auto x : r)
res = max(res, (unsigned)x);
return res + size;
}
inline
size_t BaseInstruction::get_mem(RegType reg_type) const
{
if (get_reg_type() == reg_type and is_direct_memory_access())
return n + size;
else
return 0;
}
inline
bool BaseInstruction::is_direct_memory_access() const
{
switch (opcode)
{
case LDMS:
case STMS:
case GLDMS:
case GSTMS:
case LDMC:
case STMC:
case GLDMC:
case GSTMC:
case LDMINT:
case STMINT:
case LDMSB:
case STMSB:
case LDMCB:
case STMCB:
return true;
default:
return false;
}
}
template<class sint, class sgf2n>
inline void Instruction::execute(Processor<sint, sgf2n>& Proc) const
{
auto& Procp = Proc.Procp;
auto& Proc2 = Proc.Proc2;
// optimize some instructions
switch (opcode)
{
case CONVMODP:
vector<Integer> values;
values.reserve(size);
for (int i = 0; i < size; i++)
{
auto source = Proc.read_Cp(r[1] + i);
Integer tmp;
if (n == 0)
tmp = Integer::convert_unsigned(source);
else if (n <= 64)
tmp = Integer(source, n);
else
throw Processor_Error(to_string(n) + "-bit conversion impossible; "
"integer registers only have 64 bits");
values.push_back(tmp);
}
if (r[2])
Procp.protocol.sync(values, Proc.P);
for (int i = 0; i < size; i++)
Proc.write_Ci(r[0] + i, values[i].get());
return;
}
int r[3] = {this->r[0], this->r[1], this->r[2]};
int64_t n = this->n;
for (int i = 0; i < size; i++)
{ switch (opcode)
{
case LDMC:
Proc.write_Cp(r[0],Proc.machine.Mp.read_C(n));
n++;
break;
case STMC:
Proc.machine.Mp.write_C(n,Proc.read_Cp(r[0]));
n++;
break;
case MOVC:
Proc.write_Cp(r[0],Proc.read_Cp(r[1]));
break;
case CONCATS:
{
auto& S = Proc.Procp.get_S();
auto dest = S.begin() + r[0];
for (auto j = start.begin(); j < start.end(); j += 2)
{
auto source = S.begin() + *(j + 1);
bytecode_assert(dest + *j <= S.end());
bytecode_assert(source + *j <= S.end());
for (int k = 0; k < *j; k++)
*dest++ = *source++;
}
return;
}
case ZIPS:
{
auto& S = Proc.Procp.get_S();
auto dest = S.begin() + r[0];
for (int i = 0; i < get_size(); i++)
{
*dest++ = S[r[1] + i];
*dest++ = S[r[2] + i];
}
return;
}
case DIVC:
Proc.write_Cp(r[0], Proc.read_Cp(r[1]) / sanitize(Proc.Procp, r[2]));
break;
case GDIVC:
Proc.write_C2(r[0], Proc.read_C2(r[1]) / sanitize(Proc.Proc2, r[2]));
break;
case FLOORDIVC:
Proc.temp.aa.from_signed(Proc.read_Cp(r[1]));
Proc.temp.aa2.from_signed(sanitize(Proc.Procp, r[2]));
Proc.write_Cp(r[0], bigint(Proc.temp.aa / Proc.temp.aa2));
break;
case MODC:
to_bigint(Proc.temp.aa, Proc.read_Cp(r[1]));
to_bigint(Proc.temp.aa2, sanitize(Proc.Procp, r[2]));
mpz_fdiv_r(Proc.temp.aa.get_mpz_t(), Proc.temp.aa.get_mpz_t(), Proc.temp.aa2.get_mpz_t());
Proc.temp.ansp.convert_destroy(Proc.temp.aa);
Proc.write_Cp(r[0],Proc.temp.ansp);
break;
case LEGENDREC:
to_bigint(Proc.temp.aa, Proc.read_Cp(r[1]));
Proc.temp.aa = mpz_legendre(Proc.temp.aa.get_mpz_t(), sint::clear::pr().get_mpz_t());
to_gfp(Proc.temp.ansp, Proc.temp.aa);
Proc.write_Cp(r[0], Proc.temp.ansp);
break;
case DIGESTC:
{
octetStream o;
to_bigint(Proc.temp.aa, Proc.read_Cp(r[1]));
to_gfp(Proc.temp.ansp, Proc.temp.aa);
Proc.temp.ansp.pack(o);
// keep first n bytes
to_gfp(Proc.temp.ansp, o.check_sum(n));
Proc.write_Cp(r[0], Proc.temp.ansp);
}
break;
case DIVCI:
if (n == 0)
throw Processor_Error("Division by immediate zero");
Proc.write_Cp(r[0], Proc.read_Cp(r[1]) / n);
break;
case GDIVCI:
if (n == 0)
throw Processor_Error("Division by immediate zero");
Proc.write_C2(r[0], Proc.read_C2(r[1]) / n);
break;
case INV2M:
Proc.write_Cp(r[0], Proc.get_inverse2(n));
break;
case MODCI:
if (n == 0)
throw Processor_Error("Modulo by immediate zero");
to_bigint(Proc.temp.aa, Proc.read_Cp(r[1]));
to_gfp(Proc.temp.ansp, Proc.temp.aa2 = mpz_fdiv_ui(Proc.temp.aa.get_mpz_t(), n));
Proc.write_Cp(r[0],Proc.temp.ansp);
break;
case SQUARE:
Procp.DataF.get_two(DATA_SQUARE, Proc.get_Sp_ref(r[0]),Proc.get_Sp_ref(r[1]));
break;
case GSQUARE:
Proc2.DataF.get_two(DATA_SQUARE, Proc.get_S2_ref(r[0]),Proc.get_S2_ref(r[1]));
break;
case INV:
Procp.DataF.get_two(DATA_INVERSE, Proc.get_Sp_ref(r[0]),Proc.get_Sp_ref(r[1]));
break;
case GINV:
Proc2.DataF.get_two(DATA_INVERSE, Proc.get_S2_ref(r[0]),Proc.get_S2_ref(r[1]));
break;
case RANDOMS:
Procp.protocol.randoms_inst(Procp.get_S(), *this);
return;
case INPUTMASKREG:
Procp.DataF.get_input(Proc.get_Sp_ref(r[0]), Proc.temp.rrp, Proc.read_Ci(r[2]));
Proc.write_Cp(r[1], Proc.temp.rrp);
break;
case INPUTMASK:
Procp.DataF.get_input(Proc.get_Sp_ref(r[0]), Proc.temp.rrp, n);
Proc.write_Cp(r[1], Proc.temp.rrp);
break;
case GINPUTMASK:
Proc2.DataF.get_input(Proc.get_S2_ref(r[0]), Proc.temp.ans2, n);
Proc.write_C2(r[1], Proc.temp.ans2);
break;
case INPUT:
sint::Input::template input<IntInput<typename sint::clear>>(Proc.Procp, start, size);
return;
case GINPUT:
sgf2n::Input::template input<IntInput<typename sgf2n::clear>>(Proc.Proc2, start, size);
return;
case INPUTFIX:
sint::Input::template input<FixInput>(Proc.Procp, start, size);
return;
case INPUTFLOAT:
sint::Input::template input<FloatInput>(Proc.Procp, start, size);
return;
case INPUTMIXED:
sint::Input::input_mixed(Proc.Procp, start, size, false);
return;
case INPUTMIXEDREG:
sint::Input::input_mixed(Proc.Procp, start, size, true);
return;
case RAWINPUT:
Proc.Procp.input.raw_input(Proc.Procp, start, size);
return;
case GRAWINPUT:
Proc.Proc2.input.raw_input(Proc.Proc2, start, size);
return;
case INPUTPERSONAL:
Proc.Procp.input_personal(start);
return;
case SENDPERSONAL:
Proc.Procp.send_personal(start);
return;
case PRIVATEOUTPUT:
Proc.Procp.check();
Proc.Procp.private_output(start);
return;
// Note: Fp version has different semantics for NOTC than GNOTC
case NOTC:
to_bigint(Proc.temp.aa, Proc.read_Cp(r[1]));
mpz_com(Proc.temp.aa.get_mpz_t(), Proc.temp.aa.get_mpz_t());
Proc.temp.aa2 = 1;
Proc.temp.aa2 <<= n;
Proc.temp.aa += Proc.temp.aa2;
Proc.temp.ansp.convert_destroy(Proc.temp.aa);
Proc.write_Cp(r[0],Proc.temp.ansp);
break;
case SHRSI:
sint::shrsi(Procp, *this);
return;
case GSHRSI:
sgf2n::shrsi(Proc2, *this);
return;
case OPEN:
Proc.Procp.POpen(*this);
return;
case GOPEN:
Proc.Proc2.POpen(*this);
return;
case MULS:
Proc.Procp.muls(start);
return;
case GMULS:
Proc.Proc2.muls(start);
return;
case MULRS:
Proc.Procp.mulrs(start);
return;
case GMULRS:
Proc.Proc2.protocol.mulrs(start, Proc.Proc2);
return;
case DOTPRODS:
Proc.Procp.dotprods(start, size);
return;
case GDOTPRODS:
Proc.Proc2.dotprods(start, size);
return;
case MATMULS:
Proc.Procp.matmuls(Proc.Procp.get_S(), *this);
return;
case GMATMULS:
Proc.Proc2.matmuls(Proc.Proc2.get_S(), *this);
return;
case MATMULSM:
Proc.Procp.protocol.matmulsm(Proc.Procp, Proc.machine.Mp.MS, *this);
return;
case GMATMULSM:
Proc.Proc2.protocol.matmulsm(Proc.Proc2, Proc.machine.M2.MS, *this);
return;
case CONV2DS:
Proc.Procp.protocol.conv2ds(Proc.Procp, *this);
return;
case TRUNC_PR:
Proc.Procp.protocol.trunc_pr(start, size, Proc.Procp,
sint::clear::characteristic_two);
return;
case SECSHUFFLE:
Proc.Procp.secure_shuffle(*this);
return;
case GSECSHUFFLE:
Proc.Proc2.secure_shuffle(*this);
return;
case GENSECSHUFFLE:
Proc.write_Ci(r[0], Proc.Procp.generate_secure_shuffle(*this,
Proc.machine.shuffle_store));
return;
case APPLYSHUFFLE:
Proc.Procp.apply_shuffle(*this, Proc.machine.shuffle_store);
return;
case DELSHUFFLE:
Proc.machine.shuffle_store.del(Proc.read_Ci(r[0]));
return;
case INVPERM:
Proc.Procp.inverse_permutation(*this);
return;
case CHECK:
{
CheckJob job;
if (BaseMachine::thread_num == 0)
BaseMachine::s().queues.distribute(job, 0);
Proc.check();
if (BaseMachine::thread_num == 0)
BaseMachine::s().queues.wrap_up(job);
return;
}
case JMP:
Proc.PC += (signed int) n;
break;
case JMPI:
Proc.PC += (signed int) Proc.read_Ci(r[0]);
break;
case JMPNZ:
if (Proc.read_Ci(r[0]) != 0)
{ Proc.PC += (signed int) n; }
break;
case JMPEQZ:
if (Proc.read_Ci(r[0]) == 0)
{ Proc.PC += (signed int) n; }
break;
case PRINTREG:
{
Proc.out << "Reg[" << r[0] << "] = " << Proc.read_Cp(r[0])
<< " # " << string((char*)&n, 4) << endl;
}
break;
case PRINTREGPLAIN:
print(Proc.out, &Proc.read_Cp(r[0]));
return;
case PRINTREGPLAINS:
Proc.out << Proc.read_Sp(r[0]);
return;
case GPRINTREGPLAINS:
Proc.out << Proc.read_S2(r[0]);
return;
case CONDPRINTPLAIN:
if (not Proc.read_Cp(r[0]).is_zero())
{
print(Proc.out, &Proc.read_Cp(r[1]), &Proc.read_Cp(r[2]));
}
return;
case PRINTFLOATPLAIN:
print(Proc.out, &Proc.read_Cp(start[0]), &Proc.read_Cp(start[1]),
&Proc.read_Cp(start[2]), &Proc.read_Cp(start[3]),
&Proc.read_Cp(start[4]));
return;
case CONDPRINTSTR:
if (not Proc.read_Cp(r[0]).is_zero())
{
string str = {(char*)&n, 4};
size_t n = str.find('\0');
if (n < 4)
str.erase(n);
Proc.out << str << flush;
}
break;
case REQBL:
case GREQBL:
case ACTIVE:
case USE:
case USE_INP:
case USE_EDABIT:
case USE_MATMUL:
case USE_PREP:
case GUSE_PREP:
break;
case TIME:
Proc.machine.time();
break;
case START:
Proc.machine.set_thread_comm(Proc.P.total_comm());
Proc.machine.start(n);
break;
case STOP:
Proc.machine.set_thread_comm(Proc.P.total_comm());
Proc.machine.stop(n);
break;
case RUN_TAPE:
Proc.machine.run_tapes(start, Proc.DataF);
break;
case JOIN_TAPE:
Proc.machine.join_tape(r[0]);
break;
case CALL_TAPE:
Proc.call_tape(r[0], Proc.read_Ci(r[1]), start);
break;
case CRASH:
if (Proc.read_Ci(r[0]))
throw crash_requested();
break;
case STARTGRIND:
CALLGRIND_START_INSTRUMENTATION;
break;
case STOPGRIND:
CALLGRIND_STOP_INSTRUMENTATION;
break;
case NPLAYERS:
Proc.write_Ci(r[0], Proc.P.num_players());
break;
case THRESHOLD:
Proc.write_Ci(r[0], sint::threshold(Proc.P.num_players()));
break;
case PLAYERID:
Proc.write_Ci(r[0], Proc.P.my_num());
break;
case CMDLINEARG:
{
size_t idx = Proc.read_Ci(r[1]);
auto& args = OnlineOptions::singleton.args;
if (idx < args.size())
Proc.write_Ci(r[0], args[idx]);
else
{
cerr << idx << "-th command-line argument not given" << endl;
exit(1);
}
break;
}
// ***
// TODO: read/write shared GF(2^n) data instructions
// ***
case LISTEN:
// listen for connections at port number n
Proc.external_clients.start_listening(Proc.read_Ci(r[0]));
break;
case ACCEPTCLIENTCONNECTION:
{
TimeScope _(Proc.client_timer);
// get client connection at port number n + my_num())
int client_handle = Proc.external_clients.get_client_connection(
Proc.read_Ci(r[1]));
{
octetStream os;
os.store(int(sint::open_type::type_char()));
sint::specification(os);
sint::clear::specification(os);
os.Send(Proc.external_clients.get_socket(client_handle));
}
Proc.write_Ci(r[0], client_handle);
break;
}
case INITCLIENTCONNECTION:
Proc.write_Ci(r[0],
Proc.external_clients.init_client_connection(str,
Proc.read_Ci(r[1]), Proc.read_Ci(r[2])));
break;
case CLOSECLIENTCONNECTION:
Proc.external_clients.close_connection(Proc.read_Ci(r[0]));
break;
case READSOCKETINT:
Proc.read_socket_ints(Proc.read_Ci(r[0]), start, n);
break;
case READSOCKETC:
Proc.read_socket_vector(Proc.read_Ci(r[0]), start, n);
break;
case READSOCKETS:
// read shares and MAC shares
Proc.read_socket_private(Proc.read_Ci(r[0]), start, n, true);
break;
case WRITESOCKETINT:
Proc.write_socket(INT, false, Proc.read_Ci(r[0]), r[1], start, n);
break;
case WRITESOCKETC:
Proc.write_socket(CINT, false, Proc.read_Ci(r[0]), r[1], start, n);
break;
case WRITESOCKETS:
// Send shares + MACs
Proc.write_socket(SINT, true, Proc.read_Ci(r[0]), r[1], start, n);
break;
case WRITESOCKETSHARE:
// Send only shares, no MACs
// N.B. doesn't make sense to have a corresponding read instruction for this
Proc.write_socket(SINT, false, Proc.read_Ci(r[0]), r[1], start, n);
break;
case WRITEFILESHARE:
// Write shares to file system
Procp.write_shares_to_file(Proc.read_Ci(r[0]), start, size);
return;
case READFILESHARE:
// Read shares from file system
Procp.read_shares_from_file(Proc.read_Ci(r[0]), r[1], start, size,
Proc);
return;
case GWRITEFILESHARE:
// Write shares to file system
Proc2.write_shares_to_file(Proc.read_Ci(r[0]), start, size);
return;
case GREADFILESHARE:
// Read shares from file system
Proc2.read_shares_from_file(Proc.read_Ci(r[0]), r[1], start, size,
Proc);
return;
case PUBINPUT:
Proc.get_Cp_ref(r[0]) = Proc.template
get_input<IntInput<typename sint::clear>>(
Proc.public_input, Proc.public_input_filename, 0).items[0];
break;
case RAWOUTPUT:
Proc.read_Cp(r[0]).output(Proc.get_public_output(), false);
break;
case INTOUTPUT:
if (n == -1 or n == Proc.P.my_num())
Integer(Proc.read_Ci(r[0])).output(Proc.get_binary_output(), false);
break;
case FLOATOUTPUT:
if (n == -1 or n == Proc.P.my_num())
{
double tmp = bigint::get_float(Proc.read_Cp(start[0] + i),
Proc.read_Cp(start[1] + i), Proc.read_Cp(start[2] + i),
Proc.read_Cp(start[3] + i)).get_d();
Proc.get_binary_output().write((char*) &tmp, sizeof(double));
Proc.get_binary_output().flush();
}
break;
case FIXINPUT:
Proc.fixinput(*this);
return;
case PREP:
Procp.DataF.get(Proc.Procp.get_S(), r, start, size);
return;
case GPREP:
Proc2.DataF.get(Proc.Proc2.get_S(), r, start, size);
return;
case CISC:
Procp.protocol.cisc(Procp, *this);
return;
default:
throw invalid_opcode(opcode);
break;
#define X(NAME, CODE) case NAME:
COMBI_INSTRUCTIONS
#undef X
#define X(NAME, CODE) case NAME: throw no_dynamic_memory();
DYNAMIC_INSTRUCTIONS
#undef X
#define X(NAME, PRE, CODE) case NAME:
ARITHMETIC_INSTRUCTIONS
#undef X
#define X(NAME, PRE, CODE) case NAME:
CLEAR_GF2N_INSTRUCTIONS
#undef X
#define X(NAME, PRE, CODE) case NAME:
REGINT_INSTRUCTIONS
#undef X
throw runtime_error("wrong case statement"); return;
}
if (size > 1)
{
r[0]++; r[1]++; r[2]++;
}
}
}
template<class sint, class sgf2n>
void Program::execute(Processor<sint, sgf2n>& Proc) const
{
if (OnlineOptions::singleton.has_option("throw_exceptions"))
execute_with_errors(Proc);
else
{
try
{
execute_with_errors(Proc);
}
catch (exception& e)
{
cerr << "Fatal error at " << name << ":" << Proc.last_PC << " ("
<< p[Proc.last_PC].get_name() << "): " << e.what() << endl;
exit(1);
}
}
}
template<class sint, class sgf2n>
void Program::execute_with_errors(Processor<sint, sgf2n>& Proc) const
{
unsigned int size = p.size();
Proc.PC=0;
auto& Procp = Proc.Procp;
auto& Proc2 = Proc.Proc2;
// binary instructions
typedef typename sint::bit_type T;
auto& processor = Proc.Procb;
auto& Ci = Proc.get_Ci();
while (Proc.PC<size)
{
Proc.last_PC = Proc.PC;
auto& instruction = p[Proc.PC];
auto& r = instruction.r;
auto& n = instruction.n;
auto& start = instruction.start;
auto& size = instruction.size;
(void) start;
#ifdef COUNT_INSTRUCTIONS
#ifdef TIME_INSTRUCTIONS
RunningTimer timer;
int PC = Proc.PC;
#else
Proc.stats[p[Proc.PC].get_opcode()]++;
#endif
#endif
#ifdef OUTPUT_INSTRUCTIONS
if (OnlineOptions::singleton.has_option("output_instructions"))
cerr << instruction << endl;
#endif
Proc.PC++;
switch(instruction.get_opcode())
{
#define X(NAME, PRE, CODE) \
case NAME: { PRE; for (int i = 0; i < size; i++) { CODE; } } break;
ARITHMETIC_INSTRUCTIONS
#undef X
#define X(NAME, PRE, CODE) case NAME:
CLEAR_GF2N_INSTRUCTIONS
instruction.execute_clear_gf2n(Proc2.get_C(), Proc.machine.M2.MC, Proc); break;
#undef X
#define X(NAME, PRE, CODE) case NAME:
REGINT_INSTRUCTIONS
instruction.execute_regint(Proc, Proc.machine.Mi.MC); break;
#undef X
#define X(NAME, CODE) case NAME: CODE; break;
COMBI_INSTRUCTIONS
#undef X
default:
instruction.execute(Proc);
}
#if defined(COUNT_INSTRUCTIONS) and defined(TIME_INSTRUCTIONS)
Proc.stats[p[PC].get_opcode()] += timer.elapsed() * 1e9;
#endif
}
}
template<class T>
void Program::mulm_check() const
{
if (T::function_dependent
and not (BaseMachine::allow_mulm()
or OnlineOptions::singleton.has_option("allow_mulm")))
throw runtime_error("Mixed multiplication not implemented for function-dependent preprocessing. "
"Use '-E <protocol>' during compilation or state "
"'program.use_mulm = False' at the beginning of your high-level program.");
}
template<class T>
void Instruction::print(SwitchableOutput& out, T* v, T* p, T* s, T* z, T* nan) const
{
if (size > 1)
out << "[";
for (int i = 0; i < size; i++)
{
if (p == 0 or (*p == 0 and s == 0))
out.signed_output(v[i]);
else if (s == 0)
out << bigint::get_float(v[i], p[i], {}, {});
else
{
assert(z != 0);
assert(nan != 0);
bigint::output_float(out, bigint::get_float(v[i], p[i], s[i], z[i]),
nan[i]);
}
if (i < size - 1)
out << ", ";
}
if (size > 1)
out << "]";
}
template<class T>
typename T::clear Instruction::sanitize(SubProcessor<T>& proc, int reg) const
{
if (not T::real_shares(proc.P))
return 1;
auto& res = proc.get_C_ref(reg);
if (res.is_zero())
throw Processor_Error("Division by zero from register");
return res;
}
#endif