Files
MP-SPDZ/Programs/Source/mnist_full_C.mpc
Marcel Keller 2813c0ef0f Maintenance.
2023-08-14 18:29:46 +10:00

106 lines
2.6 KiB
Plaintext

# this trains network C (LeNet) from SecureNN
# see https://github.com/csiro-mlai/mnist-mpc for data preparation
import ml
import math
import re
import util
program.options_from_args()
sfix.set_precision_from_args(program, adapt_ring=True)
MultiArray.disable_index_checks()
if 'profile' in program.args:
print('Compiling for profiling')
N = 1000
n_test = 100
elif 'debug' in program.args:
N = 100
n_test = 100
elif 'debug1000' in program.args:
N = 1000
n_test = 1000
elif 'debug5000' in program.args:
N = 5000
n_test = 5000
else:
N = 60000
n_test = 10000
n_examples = N
n_features = 28 ** 2
try:
n_epochs = int(program.args[1])
except:
n_epochs = 100
try:
batch_size = int(program.args[2])
except:
batch_size = min(N, 128)
if 'savemem' in program.args:
N = batch_size
else:
N = min(N, max(1000, batch_size))
try:
ml.set_n_threads(int(program.args[3]))
except:
pass
ml.Layer.back_batch_size = batch_size
layers = [
ml.FixConv2d([n_examples, 28, 28, 1], (20, 5, 5, 1), (20,), [N, 24, 24, 20], (1, 1), 'VALID'),
ml.MaxPool([N, 24, 24, 20]),
ml.Relu([N, 12, 12, 20]),
ml.FixConv2d([N, 12, 12, 20], (50, 5, 5, 20), (50,), [N, 8, 8, 50], (1, 1), 'VALID'),
ml.MaxPool([N, 8, 8, 50]),
ml.Relu([N, 4, 4, 50]),
ml.Dense(N, 800, 500),
ml.Relu([N, 500]),
ml.Dense(N, 500, 10),
]
layers += [ml.MultiOutput.from_args(program, n_examples, 10)]
if 'batchnorm' in program.args:
for arg in program.args:
assert not arg.startswith('dropout')
layers.insert(4, ml.BatchNorm([N, 8, 8, 50], args=program.args))
layers.insert(1, ml.BatchNorm([N, 24, 24, 20], args=program.args))
if 'dropout' in program.args or 'dropout2' in program.args:
layers.insert(8, ml.Dropout(N, 500))
elif 'dropout.25' in program.args:
layers.insert(8, ml.Dropout(N, 500, alpha=0.25))
elif 'dropout.125' in program.args:
layers.insert(8, ml.Dropout(N, 500, alpha=0.125))
if 'dropout2' in program.args:
layers.insert(6, ml.Dropout(N, 800, alpha=0.125))
elif 'dropout1' in program.args:
layers.insert(6, ml.Dropout(N, 800, alpha=0.5))
if 'no_relu' in program.args:
for x in layers:
if isinstance(x, ml.Relu):
layers.remove(x)
print(layers)
Y = sint.Matrix(n_test, 10)
X = sfix.Matrix(n_test, n_features)
if not ('no_acc' in program.args and 'no_loss' in program.args):
layers[-1].Y.input_from(0)
layers[0].X.input_from(0)
Y.input_from(0)
X.input_from(0)
optim = ml.Optimizer.from_args(program, layers)
optim.summary()
optim.run_by_args(program, n_epochs, batch_size, X, Y, acc_batch_size=N)