Files
MP-SPDZ/Programs/Source/torch_densenet.py
Marcel Keller 78fe3d8bad Maintenance.
2024-07-09 12:19:52 +10:00

54 lines
1.5 KiB
Python

# this tests the pretrained DenseNet in secure computation
program.options_from_args()
sfix.set_precision_from_args(program, adapt_ring=True)
MultiArray.disable_index_checks()
Array.check_indices = False
from Compiler import ml
try:
ml.set_n_threads(int(program.args[2]))
except:
pass
import torchvision
import torch
import numpy
import requests
import io
import PIL
from torchvision import transforms
model = getattr(torchvision.models.densenet, 'densenet' + program.args[1])(
weights='DEFAULT')
r = requests.get('https://github.com/pytorch/hub/raw/master/images/dog.jpg')
input_image = PIL.Image.open(io.BytesIO(r.content))
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
with torch.no_grad():
output = int(model(input_batch).argmax())
print('Model says %d' % output)
secret_input = sfix.input_tensor_via(
0, numpy.moveaxis(input_batch.numpy(), 1, -1))
layers = ml.layers_from_torch(
model, secret_input.shape, 1, input_via=0,
layer_args={model.features.conv0: {'weight_type': sfix.get_prec_type(32)}})
optimizer = ml.Optimizer(layers)
optimizer.output_stats = 'output_stats' in program.args
print_ln('Secure computation says %s',
optimizer.eval(secret_input, top=True)[0].reveal())