Files
MP-SPDZ/Programs/Source/aes.mpc

394 lines
15 KiB
Plaintext

from copy import copy
rcon_raw = [
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb
]
nparallel = 1
noutput = 1
nthreads = 1
rcon = VectorArray(len(rcon_raw), cgf2n, nparallel)
for idx in range(len(rcon_raw)):
rcon[idx] = cgf2n(rcon_raw[idx],size=nparallel)
powers2 = VectorArray(8, cgf2n, nparallel)
for idx in range(8):
powers2[idx] = cgf2n(2,size=nparallel) ** (5 * idx)
@vectorize
def ApplyEmbedding(x):
in_bytes = x.bit_decompose(8)
out_bytes = [cgf2n(0) for _ in range(8)]
out_bytes[0] = sum(in_bytes[0:8])
out_bytes[1] = sum(in_bytes[idx] for idx in range(1, 8, 2))
out_bytes[2] = in_bytes[2] + in_bytes[3] + in_bytes[6] + in_bytes[7]
out_bytes[3] = in_bytes[3] + in_bytes[7]
out_bytes[4] = in_bytes[4] + in_bytes[5] + in_bytes[6] + in_bytes[7]
out_bytes[5] = in_bytes[5] + in_bytes[7]
out_bytes[6] = in_bytes[6] + in_bytes[7]
out_bytes[7] = in_bytes[7]
return sum(powers2[idx] * out_bytes[idx] for idx in range(8))
def embed_helper(in_bytes):
out_bytes = [None] * 8
out_bytes[0] = sum(in_bytes[0:8])
out_bytes[1] = sum(in_bytes[idx] for idx in range(1, 8, 2))
out_bytes[2] = in_bytes[2] + in_bytes[3] + in_bytes[6] + in_bytes[7]
out_bytes[3] = in_bytes[3] + in_bytes[7]
out_bytes[4] = in_bytes[4] + in_bytes[5] + in_bytes[6] + in_bytes[7]
out_bytes[5] = in_bytes[5] + in_bytes[7]
out_bytes[6] = in_bytes[6] + in_bytes[7]
out_bytes[7] = in_bytes[7]
return out_bytes
@vectorize
def ApplyBDEmbedding(x):
entire_sequence_bits = copy(x)
while len(entire_sequence_bits) < 8:
entire_sequence_bits.append(0)
in_bytes = entire_sequence_bits
out_bytes = embed_helper(in_bytes)
return sum(powers2[idx] * out_bytes[idx] for idx in range(8))
def PreprocInverseEmbedding(x):
in_bytes = x.bit_decompose_embedding()
out_bytes = [cgf2n(0) for _ in range(8)]
out_bytes[7] = in_bytes[7]
out_bytes[6] = in_bytes[6] + out_bytes[7]
out_bytes[5] = in_bytes[5] + out_bytes[7]
out_bytes[4] = in_bytes[4] + out_bytes[5] + out_bytes[6] + out_bytes[7]
out_bytes[3] = in_bytes[3] + out_bytes[7]
out_bytes[2] = in_bytes[2] + out_bytes[3] + out_bytes[6] + out_bytes[7]
out_bytes[1] = in_bytes[1] + out_bytes[3] + out_bytes[5] + out_bytes[7]
out_bytes[0] = in_bytes[0] + sum(out_bytes[1:8])
return out_bytes
@vectorize
def InverseEmbedding(x):
out_bytes = PreprocInverseEmbedding(x)
ret = cgf2n(0)
for idx in range(7, -1, -1):
ret = ret + (cgf2n(2) ** idx) * out_bytes[idx]
return ret
def InverseBDEmbedding(x):
return PreprocInverseEmbedding(x)
def expandAESKey(cipherKey, Nr = 10, Nb = 4, Nk = 4):
#cipherkey should be in hex
cipherKeySize = len(cipherKey)
round_key = [sgf2n(0,size=nparallel)] * 176
temp = [cgf2n(0,size=nparallel)] * 4
for i in range(Nk):
for j in range(4):
round_key[4 * i + j] = cipherKey[4 * i + j]
for i in range(Nk, Nb * (Nr + 1)):
for j in range(4):
temp[j] = round_key[(i-1) * 4 + j]
if i % Nk == 0:
#rotate the 4 bytes word to the left
k = temp[0]
temp[0] = temp[1]
temp[1] = temp[2]
temp[2] = temp[3]
temp[3] = k
#now substitute word
temp[0] = box.apply_sbox(temp[0])
temp[1] = box.apply_sbox(temp[1])
temp[2] = box.apply_sbox(temp[2])
temp[3] = box.apply_sbox(temp[3])
temp[0] = temp[0] + ApplyEmbedding(rcon[int(i//Nk)])
for j in range(4):
round_key[4 * i + j] = round_key[4 * (i - Nk) + j] + temp[j]
return round_key
#Nr = 10 -> The number of rounds in AES Cipher.
#Nb = 4 -> The number of columns of the AES state
#Nk = 4 -> The number of words of a AES key
def SecretArrayEmbedd(byte_array):
return [ApplyEmbedding(_) for _ in byte_array]
@vectorize
def subBytes(state):
for i in range(len(state)):
state[i] = box.apply_sbox(state[i])
def addRoundKey(roundKey):
@vectorize
def inner(state):
for i in range(len(state)):
state[i] = state[i] + roundKey[i]
return inner
# mixColumn takes a column and does stuff
Kv = VectorArray(4, cgf2n, nparallel)
Kv[1] = ApplyEmbedding(cgf2n(1,size=nparallel))
Kv[2] = ApplyEmbedding(cgf2n(2,size=nparallel))
Kv[3] = ApplyEmbedding(cgf2n(3,size=nparallel))
Kv[4] = ApplyEmbedding(cgf2n(4,size=nparallel))
@vectorize
def mixColumn(column):
temp = copy(column)
v1 = Kv[1]
v2 = Kv[2]
v3 = Kv[3]
v4 = Kv[4]
# no multiplication
doubles = [Kv[2] * t for t in temp]
column[0] = doubles[0] + (temp[1] + doubles[1]) + temp[2] + temp[3]
column[1] = temp[0] + doubles[1] + (temp[2] + doubles[2]) + temp[3]
column[2] = temp[0] + temp[1] + doubles[2] + (temp[3] + doubles[3])
column[3] = (temp[0] + doubles[0]) + temp[1] + temp[2] + doubles[3]
@vectorize
def mixColumns(state):
for i in range(4):
column = []
for j in range(4):
column.append(state[i*4+j])
mixColumn(column)
for j in range(4):
state[i*4+j] = column[j]
def rotate(word, n):
return word[n:]+word[0:n]
def shiftRows(state):
for i in range(4):
state[i::4] = rotate(state[i::4],i)
@vectorize
def state_collapse(state):
return [InverseEmbedding(_) for _ in state]
# such constants. very wow.
_embedded_powers = [
[0x1,0x2,0x4,0x8,0x10,0x20,0x40,0x80,0x100,0x200,0x400,0x800,0x1000,0x2000,0x4000,0x8000,0x10000,0x20000,0x40000,0x80000,0x100000,0x200000,0x400000,0x800000,0x1000000,0x2000000,0x4000000,0x8000000,0x10000000,0x20000000,0x40000000,0x80000000,0x100000000,0x200000000,0x400000000,0x800000000,0x1000000000,0x2000000000,0x4000000000,0x8000000000],
[0x1,0x4,0x10,0x40,0x100,0x400,0x1000,0x4000,0x10000,0x40000,0x100000,0x400000,0x1000000,0x4000000,0x10000000,0x40000000,0x100000000,0x400000000,0x1000000000,0x4000000000,0x108401,0x421004,0x1084010,0x4210040,0x10840100,0x42100400,0x108401000,0x421004000,0x1084010000,0x4210040000,0x840008401,0x2100021004,0x8400084010,0x1000000842,0x4000002108,0x100021,0x400084,0x1000210,0x4000840,0x10002100],
[0x1,0x10,0x100,0x1000,0x10000,0x100000,0x1000000,0x10000000,0x100000000,0x1000000000,0x108401,0x1084010,0x10840100,0x108401000,0x1084010000,0x840008401,0x8400084010,0x4000002108,0x400084,0x4000840,0x40008400,0x400084000,0x4000840000,0x8021004,0x80210040,0x802100400,0x8021004000,0x210802008,0x2108020080,0x1080010002,0x800008421,0x8000084210,0x108,0x1080,0x10800,0x108000,0x1080000,0x10800000,0x108000000,0x1080000000],
[0x1,0x100,0x10000,0x1000000,0x100000000,0x108401,0x10840100,0x1084010000,0x8400084010,0x400084,0x40008400,0x4000840000,0x80210040,0x8021004000,0x2108020080,0x800008421,0x108,0x10800,0x1080000,0x108000000,0x800108401,0x10002108,0x1000210800,0x20004010,0x2000401000,0x42008020,0x4200802000,0x84200842,0x8420084200,0x2000421084,0x40000420,0x4000042000,0x10040,0x1004000,0x100400000,0x40108401,0x4010840100,0x1080200040,0x8021080010,0x2100421080],
[0x1,0x10000,0x100000000,0x10840100,0x8400084010,0x40008400,0x80210040,0x2108020080,0x108,0x1080000,0x800108401,0x1000210800,0x2000401000,0x4200802000,0x8420084200,0x40000420,0x10040,0x100400000,0x4010840100,0x8021080010,0x40108421,0x1080000040,0x100421080,0x4200040100,0x1084200,0x842108401,0x1004210042,0x2008400004,0x4210000008,0x401080210,0x840108001,0x1000000840,0x100001000,0x840100,0x8401000000,0x800000001,0x84210800,0x2100001084,0x210802100,0x8001004210],
[0x1,0x100000000,0x8400084010,0x80210040,0x108,0x800108401,0x2000401000,0x8420084200,0x10040,0x4010840100,0x40108421,0x100421080,0x1084200,0x1004210042,0x4210000008,0x840108001,0x100001000,0x8401000000,0x84210800,0x210802100,0x800000401,0x2100420080,0x8000004000,0x4010002,0x4000800100,0x842000420,0x8421084,0x421080210,0x80010042,0x10802108,0x800000020,0x1084,0x8401084010,0x1004200040,0x4000840108,0x100020,0x2108401000,0x8400080210,0x84210802,0x10802100],
[0x1,0x8400084010,0x108,0x2000401000,0x10040,0x40108421,0x1084200,0x4210000008,0x100001000,0x84210800,0x800000401,0x8000004000,0x4000800100,0x8421084,0x80010042,0x800000020,0x8401084010,0x4000840108,0x2108401000,0x84210802,0x20,0x8000004210,0x2100,0x8401004,0x200800,0x802108420,0x21084000,0x4200842108,0x2000020000,0x1084210000,0x100421,0x1004010,0x10840008,0x108421080,0x1000200840,0x108001,0x8020004210,0x10040108,0x2108401004,0x1084210040],
[0x1,0x108,0x10040,0x1084200,0x100001000,0x800000401,0x4000800100,0x80010042,0x8401084010,0x2108401000,0x20,0x2100,0x200800,0x21084000,0x2000020000,0x100421,0x10840008,0x1000200840,0x8020004210,0x2108401004,0x400,0x42000,0x4010000,0x421080000,0x21004,0x2008420,0x210800100,0x4200002,0x401000210,0x2108401084,0x8000,0x840000,0x80200000,0x8421000000,0x420080,0x40108400,0x4210002000,0x84000040,0x8020004200,0x2108400084]
]
enum_squarings = VectorArray(8 * 40, cgf2n, nparallel)
for i,_list in enumerate(_embedded_powers):
for j,x in enumerate(_list):
enum_squarings[40 * i + j] = cgf2n(x, size=nparallel)
@vectorize
def fancy_squaring(bd_val, exponent):
#This is even more fancy; it performs directly on bit dec values
#returns x ** (2 ** exp) from a bit decomposed value
return sum(enum_squarings[exponent * 40 + idx] * bd_val[idx]
for idx in range(len(bd_val)))
def inverseMod(val):
#embedded now!
#returns x ** 254 using offline squaring
#returns an embedded result
raw_bit_dec = val.bit_decompose_embedding()
bd_val = [cgf2n(0,size=nparallel)] * 40
for idx in range(40):
if idx % 5 == 0:
bd_val[idx] = raw_bit_dec[idx // 5]
bd_squared = bd_val
squared_index = 2
mapper = [0] * 129
for idx in range(1, 8):
bd_squared = fancy_squaring(bd_val, idx)
mapper[squared_index] = bd_squared
squared_index *= 2
enum_powers = [
2, 4, 8, 16, 32, 64, 128
]
inverted_product = \
((mapper[2] * mapper[4]) * (mapper[8] * mapper[16])) * ((mapper[32] * mapper[64]) * mapper[128])
return inverted_product
K01 = VectorArray(8, cgf2n, nparallel)
for idx in range(8):
K01[idx] = ApplyBDEmbedding([0,1]) ** idx
class SpdzBox(object):
def init_matrices(self):
self.matrix_inv = [
[0,0,1,0,0,1,0,1],
[1,0,0,1,0,0,1,0],
[0,1,0,0,1,0,0,1],
[1,0,1,0,0,1,0,0],
[0,1,0,1,0,0,1,0],
[0,0,1,0,1,0,0,1],
[1,0,0,1,0,1,0,0],
[0,1,0,0,1,0,1,0]
]
to_add = [1,0,1,0,0,0,0,0]
self.addition_inv = [cgf2n(_,size=nparallel) for _ in to_add]
self.forward_matrix = [
[1,0,0,0,1,1,1,1],
[1,1,0,0,0,1,1,1],
[1,1,1,0,0,0,1,1],
[1,1,1,1,0,0,0,1],
[1,1,1,1,1,0,0,0],
[0,1,1,1,1,1,0,0],
[0,0,1,1,1,1,1,0],
[0,0,0,1,1,1,1,1]
]
forward_add = [1,1,0,0,0,1,1,0]
self.forward_add = VectorArray(len(forward_add), cgf2n, nparallel)
for i,x in enumerate(forward_add):
self.forward_add[i] = cgf2n(x, size=nparallel)
def __init__(self):
constants = [
0x63, 0x8F, 0xB5, 0x01, 0xF4, 0x25, 0xF9, 0x09, 0x05
]
self.powers = [
0, 127, 191, 223, 239, 247, 251, 253, 254
]
self.constants = [ApplyEmbedding(cgf2n(_,size=nparallel)) for _ in constants]
self.init_matrices()
def forward_bit_sbox(self, emb_byte):
emb_byte_inverse = inverseMod(emb_byte)
unembedded_x = InverseBDEmbedding(emb_byte_inverse)
linear_transform = list()
for row in self.forward_matrix:
result = cgf2n(0, size=nparallel)
for idx in range(len(row)):
result = result + unembedded_x[idx] * row[idx]
linear_transform.append(result)
#do the sum(linear_transfor + additive_layer)
summation_bd = [0 for _ in range(8)]
for idx in range(8):
summation_bd[idx] = linear_transform[idx] + self.forward_add[idx]
#Now raise this to power of 254
result = cgf2n(0,size=nparallel)
for idx in range(8):
result += ApplyBDEmbedding([summation_bd[idx]]) * K01[idx];
return result
def apply_sbox(self, what):
#applying with the multiplicative chain
return self.forward_bit_sbox(what)
box = SpdzBox()
def aesRound(roundKey):
@vectorize
def inner(state):
subBytes(state)
shiftRows(state)
mixColumns(state)
addRoundKey(roundKey)(state)
return inner
# returns a 16-byte round key based on an expanded key and round number
def createRoundKey(expandedKey, n):
return expandedKey[(n*16):(n*16+16)]
# wrapper function for 10 rounds of AES since we're using a 128-bit key
def aesMain(expandedKey, numRounds=10):
@vectorize
def inner(state):
roundKey = createRoundKey(expandedKey, 0)
addRoundKey(roundKey)(state)
for i in range(1, numRounds):
roundKey = createRoundKey(expandedKey, i)
aesRound(roundKey)(state)
roundKey = createRoundKey(expandedKey, numRounds)
subBytes(state)
shiftRows(state)
addRoundKey(roundKey)(state)
return inner
def encrypt_without_key_schedule(expandedKey):
@vectorize
def encrypt(plaintext):
plaintext = SecretArrayEmbedd(plaintext)
aesMain(expandedKey)(plaintext)
return state_collapse(plaintext)
return encrypt;
"""
Test Vectors:
plaintext:
6bc1bee22e409f96e93d7e117393172a
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
"""
def single_encryption():
key = [sgf2n.get_raw_input_from(0) for _ in range(16)]
message = [sgf2n.get_raw_input_from(1) for _ in range(16)]
key = [ApplyEmbedding(_) for _ in key]
expanded_key = expandAESKey(key)
AES = encrypt_without_key_schedule(expanded_key)
ciphertext = AES(message)
for block in ciphertext:
print_ln('%s', block.reveal())
single_encryption()