Files
MP-SPDZ/Compiler/program.py
2019-07-11 14:59:18 +10:00

986 lines
38 KiB
Python

from Compiler.config import *
from Compiler.exceptions import *
from Compiler.instructions_base import RegType
import Compiler.instructions
import Compiler.instructions_base
import compilerLib
import allocator as al
import random
import time
import sys, os, errno
import inspect
from collections import defaultdict
import itertools
import math
data_types = dict(
triple = 0,
square = 1,
bit = 2,
inverse = 3,
bittriple = 4,
bitgf2ntriple = 5
)
field_types = dict(
modp = 0,
gf2n = 1,
)
class Program(object):
""" A program consists of a list of tapes and a scheduled order
of execution for these tapes.
These are created by executing a file containing appropriate instructions
and threads. """
def __init__(self, args, options, param=-1, assemblymode=False):
self.options = options
self.args = args
self.init_names(args, assemblymode)
self.P = P_VALUES[param]
self.param = param
if (param != -1) + sum(x != 0 for x in(options.ring, options.field,
options.binary)) > 1:
raise CompilerError('can only use one out of -p, -B, -R, -F')
self.bit_length = int(options.ring) or int(options.binary) \
or int(options.field)
if not self.bit_length:
self.bit_length = BIT_LENGTHS[param]
print 'Default bit length:', self.bit_length
self.security = 40
print 'Default security parameter:', self.security
self.galois_length = int(options.galois)
print 'Galois length:', self.galois_length
self.schedule = [('start', [])]
self.tape_counter = 0
self.tapes = []
self._curr_tape = None
self.EMULATE = True # defaults
self.FIRST_PASS = False
self.DEBUG = False
self.main_thread_running = False
self.allocated_mem = RegType.create_dict(lambda: USER_MEM)
self.free_mem_blocks = defaultdict(set)
self.allocated_mem_blocks = {}
self.req_num = None
self.tape_stack = []
self.n_threads = 1
self.free_threads = set()
self.public_input_file = open(self.programs_dir + '/Public-Input/%s' % self.name, 'w')
self.types = {}
self.to_merge = [Compiler.instructions.asm_open_class, \
Compiler.instructions.gasm_open_class, \
Compiler.instructions.muls_class, \
Compiler.instructions.gmuls_class, \
Compiler.instructions.mulrs_class, \
Compiler.instructions.gmulrs, \
Compiler.instructions.dotprods_class, \
Compiler.instructions.gdotprods_class, \
Compiler.instructions.asm_input_class, \
Compiler.instructions.gasm_input_class,
Compiler.instructions.inputfix,
Compiler.instructions.inputfloat]
import Compiler.GC.instructions as gc
self.to_merge += [gc.ldmsdi, gc.stmsdi, gc.ldmsd, gc.stmsd, \
gc.stmsdci, gc.xors, gc.andrs, gc.ands, gc.inputb]
Program.prog = self
self.reset_values()
def get_args(self):
return self.args
def max_par_tapes(self):
""" Upper bound on number of tapes that will be run in parallel.
(Excludes empty tapes) """
if self.n_threads > 1:
if len(self.schedule) > 1:
raise CompilerError('Static and dynamic parallelism not compatible')
return self.n_threads
res = 1
running = defaultdict(lambda: 0)
for action,tapes in self.schedule:
tapes = [t[0] for t in tapes if not t[0].is_empty()]
if action == 'start':
for tape in tapes:
running[tape] += 1
elif action == 'stop':
for tape in tapes:
running[tape] -= 1
else:
raise CompilerError('Invalid schedule action')
res = max(res, sum(running.itervalues()))
return res
def init_names(self, args, assemblymode):
# ignore path to file - source must be in Programs/Source
if 'Programs' in os.listdir(os.getcwd()):
# compile prog in ./Programs/Source directory
self.programs_dir = os.getcwd() + '/Programs'
else:
# assume source is in main SPDZ directory
self.programs_dir = sys.path[0] + '/Programs'
print 'Compiling program in', self.programs_dir
# create extra directories if needed
for dirname in ['Public-Input', 'Bytecode', 'Schedules']:
if not os.path.exists(self.programs_dir + '/' + dirname):
os.mkdir(self.programs_dir + '/' + dirname)
progname = args[0].split('/')[-1]
if progname.endswith('.mpc'):
progname = progname[:-4]
if os.path.exists(args[0]):
self.infile = args[0]
elif assemblymode:
self.infile = self.programs_dir + '/Source/' + progname + '.asm'
else:
self.infile = self.programs_dir + '/Source/' + progname + '.mpc'
"""
self.name is input file name (minus extension) + any optional arguments.
Used to generate output filenames
"""
if self.options.outfile:
self.name = self.options.outfile + '-' + progname
else:
self.name = progname
if len(args) > 1:
self.name += '-' + '-'.join(args[1:])
self.progname = progname
def new_tape(self, function, args=[], name=None):
if name is None:
name = function.__name__
name = "%s-%s" % (self.name, name)
# make sure there is a current tape
self.curr_tape
tape_index = len(self.tapes)
self.tape_stack.append(self.curr_tape)
self.curr_tape = Tape(name, self)
self.curr_tape.prevent_direct_memory_write = True
self.tapes.append(self.curr_tape)
function(*args)
self.finalize_tape(self.curr_tape)
if self.tape_stack:
self.curr_tape = self.tape_stack.pop()
return tape_index
def run_tape(self, tape_index, arg):
if self.curr_tape is not self.tapes[0]:
raise CompilerError('Compiler does not support ' \
'recursive spawning of threads')
if self.free_threads:
thread_number = self.free_threads.pop()
else:
thread_number = self.n_threads
self.n_threads += 1
self.curr_tape.start_new_basicblock(name='pre-run_tape')
Compiler.instructions.run_tape(thread_number, arg, tape_index)
self.curr_tape.start_new_basicblock(name='post-run_tape')
self.curr_tape.req_node.children.append(self.tapes[tape_index].req_tree)
return thread_number
def join_tape(self, thread_number):
self.curr_tape.start_new_basicblock(name='pre-join_tape')
Compiler.instructions.join_tape(thread_number)
self.curr_tape.start_new_basicblock(name='post-join_tape')
self.free_threads.add(thread_number)
def start_thread(self, thread, arg):
if self.main_thread_running:
# wait for main thread to finish
self.schedule_wait(self.curr_tape)
self.main_thread_running = False
# compile thread if not been used already
if thread.tape not in self.tapes:
self.curr_tape = thread.tape
self.tapes.append(thread.tape)
thread.target(*thread.args)
# add thread to schedule
self.schedule_start(thread.tape, arg)
self.curr_tape = None
def stop_thread(self, thread):
tape = thread.tape
self.schedule_wait(tape)
def update_req(self, tape):
if self.req_num is None:
self.req_num = tape.req_num
else:
self.req_num += tape.req_num
def read_memory(self, filename):
""" Read the clear and shared memory from a file """
f = open(filename)
n = int(f.next())
self.mem_c = [0]*n
self.mem_s = [0]*n
mem = self.mem_c
done_c = False
for line in f:
line = line.split(' ')
a = int(line[0])
b = int(line[1])
if a != -1:
mem[a] = b
elif done_c:
break
else:
mem = self.mem_s
done_c = True
def get_memory(self, mem_type, i):
if mem_type == 'c':
return self.mem_c[i]
elif mem_type == 's':
return self.mem_s[i]
raise CompilerError('Invalid memory type')
def reset_values(self):
""" Reset register and memory values. """
for tape in self.tapes:
tape.reset_registers()
self.mem_c = range(USER_MEM + TMP_MEM)
self.mem_s = range(USER_MEM + TMP_MEM)
def write_bytes(self, outfile=None):
""" Write all non-empty threads and schedule to files. """
# runtime doesn't support 'new-style' parallelism yet
old_style = True
nonempty_tapes = [t for t in self.tapes]
sch_filename = self.programs_dir + '/Schedules/%s.sch' % self.name
sch_file = open(sch_filename, 'w')
print 'Writing to', sch_filename
sch_file.write(str(self.max_par_tapes()) + '\n')
sch_file.write(str(len(nonempty_tapes)) + '\n')
sch_file.write(' '.join(tape.name for tape in nonempty_tapes) + '\n')
# assign tapes indices (needed for scheduler)
for i,tape in enumerate(nonempty_tapes):
tape.index = i
for sch in self.schedule:
# schedule may still contain empty tapes: ignore these
tapes = filter(lambda x: not x[0].is_empty(), sch[1])
# no empty line
if not tapes:
continue
line = ' '.join(str(t[0].index) +
(':' + str(t[1]) if t[1] is not None else '') for t in tapes)
if old_style:
if sch[0] == 'start':
sch_file.write('%d %s\n' % (len(tapes), line))
else:
sch_file.write('%s %d %s\n' % (tapes[0], len(tapes), line))
sch_file.write('0\n')
sch_file.write(' '.join(sys.argv) + '\n')
for tape in self.tapes:
tape.write_bytes()
def schedule_start(self, tape, arg=None):
""" Schedule the start of a thread. """
if self.schedule[-1][0] == 'start':
self.schedule[-1][1].append((tape, arg))
else:
self.schedule.append(('start', [(tape, arg)]))
def schedule_wait(self, tape):
""" Schedule the end of a thread. """
if self.schedule[-1][0] == 'stop':
self.schedule[-1][1].append((tape, None))
else:
self.schedule.append(('stop', [(tape, None)]))
self.finalize_tape(tape)
self.update_req(tape)
def finalize_tape(self, tape):
if not tape.purged:
tape.optimize(self.options)
tape.write_bytes()
if self.options.asmoutfile:
tape.write_str(self.options.asmoutfile + '-' + tape.name)
tape.purge()
def emulate(self):
""" Emulate execution of entire program. """
self.reset_values()
for sch in self.schedule:
if sch[0] == 'start':
for tape in sch[1]:
self._curr_tape = tape
for block in tape.basicblocks:
for line in block.instructions:
line.execute()
def restart_main_thread(self):
if self.main_thread_running:
# wait for main thread to finish
self.schedule_wait(self._curr_tape)
self.main_thread_running = False
self._curr_tape = Tape(self.name, self)
self.tapes.append(self._curr_tape)
# add to schedule
self.schedule_start(self._curr_tape)
self.main_thread_running = True
@property
def curr_tape(self):
""" The tape that is currently running."""
if self._curr_tape is None:
# Create a new main thread if necessary
self.restart_main_thread()
return self._curr_tape
@curr_tape.setter
def curr_tape(self, value):
self._curr_tape = value
@property
def curr_block(self):
""" The basic block that is currently being created. """
return self.curr_tape.active_basicblock
def malloc(self, size, mem_type, reg_type=None):
""" Allocate memory from the top """
if not isinstance(size, (int, long)):
raise CompilerError('size must be known at compile time')
if size == 0:
return
if isinstance(mem_type, type):
self.types[mem_type.reg_type] = mem_type
mem_type = mem_type.reg_type
elif reg_type is not None:
self.types[mem_type] = reg_type
key = size, mem_type
if self.free_mem_blocks[key]:
addr = self.free_mem_blocks[key].pop()
else:
addr = self.allocated_mem[mem_type]
self.allocated_mem[mem_type] += size
if len(str(addr)) != len(str(addr + size)):
print "Memory of type '%s' now of size %d" % (mem_type, addr + size)
self.allocated_mem_blocks[addr,mem_type] = size
return addr
def free(self, addr, mem_type):
""" Free memory """
if self.curr_block.alloc_pool \
is not self.curr_tape.basicblocks[0].alloc_pool:
raise CompilerError('Cannot free memory within function block')
size = self.allocated_mem_blocks.pop((addr,mem_type))
self.free_mem_blocks[size,mem_type].add(addr)
def finalize_memory(self):
import library
self.curr_tape.start_new_basicblock(None, 'memory-usage')
# reset register counter to 0
self.curr_tape.init_registers()
for mem_type,size in self.allocated_mem.items():
if size:
#print "Memory of type '%s' of size %d" % (mem_type, size)
if mem_type in self.types:
self.types[mem_type].load_mem(size - 1, mem_type)
else:
library.load_mem(size - 1, mem_type)
def public_input(self, x):
self.public_input_file.write('%s\n' % str(x))
def set_bit_length(self, bit_length):
self.bit_length = bit_length
print 'Changed bit length for comparisons etc. to', bit_length
def set_security(self, security):
self.security = security
print 'Changed statistical security for comparison etc. to', security
def optimize_for_gc(self):
pass
def get_tape_counter(self):
res = self.tape_counter
self.tape_counter += 1
return res
class Tape:
""" A tape contains a list of basic blocks, onto which instructions are added. """
def __init__(self, name, program):
""" Set prime p and the initial instructions and registers. """
self.program = program
name += '-%d' % program.get_tape_counter()
self.init_names(name)
self.init_registers()
self.req_tree = self.ReqNode(name)
self.req_node = self.req_tree
self.basicblocks = []
self.purged = False
self.active_basicblock = None
self.start_new_basicblock()
self._is_empty = False
self.merge_opens = True
self.if_states = []
self.req_bit_length = defaultdict(lambda: 0)
self.function_basicblocks = {}
self.functions = []
self.prevent_direct_memory_write = False
class BasicBlock(object):
def __init__(self, parent, name, scope, exit_condition=None):
self.parent = parent
self.instructions = []
self.name = name
self.index = len(parent.basicblocks)
self.open_queue = []
self.exit_condition = exit_condition
self.exit_block = None
self.previous_block = None
self.scope = scope
self.children = []
if scope is not None:
scope.children.append(self)
self.alloc_pool = scope.alloc_pool
else:
self.alloc_pool = defaultdict(set)
self.purged = False
def new_reg(self, reg_type, size=None):
return self.parent.new_reg(reg_type, size=size)
def set_return(self, previous_block, sub_block):
self.previous_block = previous_block
self.sub_block = sub_block
def adjust_return(self):
offset = self.sub_block.get_offset(self)
self.previous_block.return_address_store.args[1] = offset
def set_exit(self, condition, exit_true=None):
""" Sets the block which we start from next, depending on the condition.
(Default is to go to next block in the list)
"""
self.exit_condition = condition
self.exit_block = exit_true
for reg in condition.get_used():
reg.can_eliminate = False
def add_jump(self):
""" Add the jump for this block's exit condition to list of
instructions (must be done after merging) """
self.instructions.append(self.exit_condition)
def get_offset(self, next_block):
return next_block.offset - (self.offset + len(self.instructions))
def adjust_jump(self):
""" Set the correct relative jump offset """
offset = self.get_offset(self.exit_block)
self.exit_condition.set_relative_jump(offset)
#print 'Basic block %d jumps to %d (%d)' % (next_block_index, jump_index, offset)
def purge(self):
relevant = lambda inst: inst.add_usage.__func__ is not \
Compiler.instructions_base.Instruction.add_usage.__func__
self.usage_instructions = filter(relevant, self.instructions)
del self.instructions
del self.defined_registers
self.purged = True
def add_usage(self, req_node):
if self.purged:
instructions = self.usage_instructions
else:
instructions = self.instructions
for inst in instructions:
inst.add_usage(req_node)
def __str__(self):
return self.name
def is_empty(self):
""" Returns True if the list of basic blocks is empty.
Note: False is returned even when tape only contains basic
blocks with no instructions. However, these are removed when
optimize is called. """
if not self.purged:
self._is_empty = (len(self.basicblocks) == 0)
return self._is_empty
def start_new_basicblock(self, scope=False, name=''):
# use False because None means no scope
if scope is False:
scope = self.active_basicblock
suffix = '%s-%d' % (name, len(self.basicblocks))
sub = self.BasicBlock(self, self.name + '-' + suffix, scope)
self.basicblocks.append(sub)
self.active_basicblock = sub
self.req_node.add_block(sub)
print 'Compiling basic block', sub.name
def init_registers(self):
self.reset_registers()
self.reg_counter = RegType.create_dict(lambda: 0)
def init_names(self, name):
# ignore path to file - source must be in Programs/Source
name = name.split('/')[-1]
if name.endswith('.asm'):
self.name = name[:-4]
else:
self.name = name
self.infile = self.program.programs_dir + '/Source/' + self.name + '.asm'
self.outfile = self.program.programs_dir + '/Bytecode/' + self.name + '.bc'
def purge(self):
for block in self.basicblocks:
block.purge()
self._is_empty = (len(self.basicblocks) == 0)
del self.reg_values
del self.basicblocks
del self.active_basicblock
self.purged = True
def unpurged(function):
def wrapper(self, *args, **kwargs):
if self.purged:
print '%s called on purged block %s, ignoring' % \
(function.__name__, self.name)
return
return function(self, *args, **kwargs)
return wrapper
@unpurged
def optimize(self, options):
if len(self.basicblocks) == 0:
print 'Tape %s is empty' % self.name
return
if self.if_states:
raise CompilerError('Unclosed if/else blocks')
print 'Processing tape', self.name, 'with %d blocks' % len(self.basicblocks)
for block in self.basicblocks:
al.determine_scope(block, options)
# merge open instructions
# need to do this if there are several blocks
if (options.merge_opens and self.merge_opens) or options.dead_code_elimination:
for i,block in enumerate(self.basicblocks):
if len(block.instructions) > 0:
print 'Processing basic block %s, %d/%d, %d instructions' % \
(block.name, i, len(self.basicblocks), \
len(block.instructions))
# the next call is necessary for allocation later even without merging
merger = al.Merger(block, options, \
tuple(self.program.to_merge))
if options.dead_code_elimination:
if len(block.instructions) > 10000:
print 'Eliminate dead code...'
merger.eliminate_dead_code()
if options.merge_opens and self.merge_opens:
if len(block.instructions) == 0:
block.used_from_scope = set()
block.defined_registers = set()
continue
if len(block.instructions) > 10000:
print 'Merging instructions...'
numrounds = merger.longest_paths_merge()
if numrounds > 0:
print 'Program requires %d rounds of communication' % numrounds
if merger.counter:
print 'Block requires', \
', '.join('%d %s' % (y, x.__name__) \
for x, y in merger.counter.items())
# free memory
merger = None
if options.dead_code_elimination:
block.instructions = filter(lambda x: x is not None, block.instructions)
if not (options.merge_opens and self.merge_opens):
print 'Not merging instructions in tape %s' % self.name
# add jumps
offset = 0
for block in self.basicblocks:
if block.exit_condition is not None:
block.add_jump()
block.offset = offset
offset += len(block.instructions)
for block in self.basicblocks:
if block.exit_block is not None:
block.adjust_jump()
if block.previous_block is not None:
block.adjust_return()
# now remove any empty blocks (must be done after setting jumps)
self.basicblocks = filter(lambda x: len(x.instructions) != 0, self.basicblocks)
# allocate registers
reg_counts = self.count_regs()
if not options.noreallocate:
print 'Tape register usage:', dict(reg_counts)
print 'modp: %d clear, %d secret' % (reg_counts[RegType.ClearModp], reg_counts[RegType.SecretModp])
print 'GF2N: %d clear, %d secret' % (reg_counts[RegType.ClearGF2N], reg_counts[RegType.SecretGF2N])
print 'Re-allocating...'
allocator = al.StraightlineAllocator(REG_MAX)
def alloc_loop(block):
for reg in sorted(block.used_from_scope,
key=lambda x: (x.reg_type, x.i)):
allocator.alloc_reg(reg, block.alloc_pool)
for child in block.children:
if child.instructions:
alloc_loop(child)
for i,block in enumerate(reversed(self.basicblocks)):
if len(block.instructions) > 10000:
print 'Allocating %s, %d/%d' % \
(block.name, i, len(self.basicblocks))
if block.exit_condition is not None:
jump = block.exit_condition.get_relative_jump()
if isinstance(jump, (int,long)) and jump < 0 and \
block.exit_block.scope is not None:
alloc_loop(block.exit_block.scope)
allocator.process(block.instructions, block.alloc_pool)
# offline data requirements
print 'Compile offline data requirements...'
self.req_num = self.req_tree.aggregate()
print 'Tape requires', self.req_num
for req,num in sorted(self.req_num.items()):
if num == float('inf'):
num = -1
if req[1] in data_types:
self.basicblocks[-1].instructions.append(
Compiler.instructions.use(field_types[req[0]], \
data_types[req[1]], num, \
add_to_prog=False))
elif req[1] == 'input':
self.basicblocks[-1].instructions.append(
Compiler.instructions.use_inp(field_types[req[0]], \
req[2], num, \
add_to_prog=False))
elif req[0] == 'modp':
self.basicblocks[-1].instructions.append(
Compiler.instructions.use_prep(req[1], num, \
add_to_prog=False))
elif req[0] == 'gf2n':
self.basicblocks[-1].instructions.append(
Compiler.instructions.guse_prep(req[1], num, \
add_to_prog=False))
if not self.is_empty():
# bit length requirement
for x in ('p', '2'):
if self.req_bit_length[x]:
bl = self.req_bit_length[x]
if self.program.options.ring:
bl = -int(self.program.options.ring)
self.basicblocks[-1].instructions.append(
Compiler.instructions.reqbl(bl,
add_to_prog=False))
print 'Tape requires prime bit length', self.req_bit_length['p']
print 'Tape requires galois bit length', self.req_bit_length['2']
@unpurged
def _get_instructions(self):
return itertools.chain.\
from_iterable(b.instructions for b in self.basicblocks)
@unpurged
def get_encoding(self):
""" Get the encoding of the program, in human-readable format. """
return [i.get_encoding() for i in self._get_instructions() if i is not None]
@unpurged
def get_bytes(self):
""" Get the byte encoding of the program as an actual string of bytes. """
return "".join(str(i.get_bytes()) for i in self._get_instructions() if i is not None)
@unpurged
def write_encoding(self, filename):
""" Write the readable encoding to a file. """
print 'Writing to', filename
f = open(filename, 'w')
for line in self.get_encoding():
f.write(str(line) + '\n')
f.close()
@unpurged
def write_str(self, filename):
""" Write the sequence of instructions to a file. """
print 'Writing to', filename
f = open(filename, 'w')
n = 0
for block in self.basicblocks:
if block.instructions:
f.write('# %s\n' % block.name)
for line in block.instructions:
f.write('%s # %d\n' % (line, n))
n += 1
f.close()
@unpurged
def write_bytes(self, filename=None):
""" Write the program's byte encoding to a file. """
if filename is None:
filename = self.outfile
if not filename.endswith('.bc'):
filename += '.bc'
if not 'Bytecode' in filename:
filename = self.program.programs_dir + '/Bytecode/' + filename
print 'Writing to', filename
f = open(filename, 'w')
f.write(self.get_bytes())
f.close()
def new_reg(self, reg_type, size=None):
return self.Register(reg_type, self, size=size)
def count_regs(self, reg_type=None):
if reg_type is None:
return self.reg_counter
else:
return self.reg_counter[reg_type]
def reset_registers(self):
""" Reset register values to zero. """
self.reg_values = RegType.create_dict(lambda: [0] * INIT_REG_MAX)
def get_value(self, reg_type, i):
return self.reg_values[reg_type][i]
def __str__(self):
return self.name
class ReqNum(defaultdict):
def __init__(self, init={}):
super(Tape.ReqNum, self).__init__(lambda: 0, init)
def __add__(self, other):
res = Tape.ReqNum()
for i,count in self.items():
res[i] += count
for i,count in other.items():
res[i] += count
return res
def __mul__(self, other):
res = Tape.ReqNum()
for i in self:
res[i] = other * self[i]
return res
__rmul__ = __mul__
def set_all(self, value):
res = Tape.ReqNum()
for i in self:
res[i] = value
return res
def max(self, other):
res = Tape.ReqNum()
for i in self:
res[i] = max(self[i], other[i])
for i in other:
res[i] = max(self[i], other[i])
return res
def cost(self):
return sum(num * COST[req[0]][req[1]] for req,num in self.items() \
if req[1] != 'input')
def __str__(self):
return ", ".join('%s inputs in %s from player %d' \
% (num, req[0], req[2]) \
if req[1] == 'input' \
else '%s %ss in %s' % (num, req[1], req[0]) \
for req,num in self.items())
def __repr__(self):
return repr(dict(self))
class ReqNode(object):
__slots__ = ['num', 'children', 'name', 'blocks']
def __init__(self, name):
self.children = []
self.name = name
self.blocks = []
def aggregate(self, *args):
self.num = Tape.ReqNum()
for block in self.blocks:
block.add_usage(self)
res = reduce(lambda x,y: x + y.aggregate(self.name),
self.children, self.num)
return res
def increment(self, data_type, num=1):
self.num[data_type] += num
def add_block(self, block):
self.blocks.append(block)
class ReqChild(object):
__slots__ = ['aggregator', 'nodes', 'parent']
def __init__(self, aggregator, parent):
self.aggregator = aggregator
self.nodes = []
self.parent = parent
def aggregate(self, name):
res = self.aggregator([node.aggregate() for node in self.nodes])
return res
def add_node(self, tape, name):
new_node = Tape.ReqNode(name)
self.nodes.append(new_node)
tape.req_node = new_node
def open_scope(self, aggregator, scope=False, name=''):
child = self.ReqChild(aggregator, self.req_node)
self.req_node.children.append(child)
child.add_node(self, '%s-%d' % (name, len(self.basicblocks)))
self.start_new_basicblock(name=name)
return child
def close_scope(self, outer_scope, parent_req_node, name):
self.req_node = parent_req_node
self.start_new_basicblock(outer_scope, name)
def require_bit_length(self, bit_length, t='p'):
if t == 'p':
self.req_bit_length[t] = max(bit_length + 1, \
self.req_bit_length[t])
if self.program.param != -1 and bit_length >= self.program.param:
raise CompilerError('Inadequate bit length %d for prime, ' \
'program requires %d bits' % \
(self.program.param, self.req_bit_length['p']))
else:
self.req_bit_length[t] = max(bit_length, self.req_bit_length)
class Register(object):
"""
Class for creating new registers. The register's index is automatically assigned
based on the block's reg_counter dictionary.
The 'value' property is for emulation.
"""
__slots__ = ["reg_type", "program", "i", "value", "_is_active", \
"size", "vector", "vectorbase", "caller", \
"can_eliminate"]
def __init__(self, reg_type, program, value=None, size=None, i=None):
""" Creates a new register.
reg_type must be one of those defined in RegType. """
if Compiler.instructions_base.get_global_instruction_type() == 'gf2n':
if reg_type == RegType.ClearModp:
reg_type = RegType.ClearGF2N
elif reg_type == RegType.SecretModp:
reg_type = RegType.SecretGF2N
self.reg_type = reg_type
self.program = program
if size is None:
size = Compiler.instructions_base.get_global_vector_size()
self.size = size
if i is not None:
self.i = i
else:
self.i = program.reg_counter[reg_type]
program.reg_counter[reg_type] += size
self.vector = []
self.vectorbase = self
if value is not None:
self.value = value
self._is_active = False
self.can_eliminate = True
if Program.prog.DEBUG:
self.caller = [frame[1:] for frame in inspect.stack()[1:]]
else:
self.caller = None
if self.i % 1000000 == 0 and self.i > 0:
print "Initialized %d registers at" % self.i, time.asctime()
def set_size(self, size):
if self.size == size:
return
elif self.size == 1 and self.vectorbase is self:
if '%s%d' % (self.reg_type, self.i) in compilerLib.VARS:
# create vector register in assembly mode
self.size = size
self.vector = [self]
for i in range(1,size):
reg = compilerLib.VARS['%s%d' % (self.reg_type, self.i + i)]
reg.set_vectorbase(self)
self.vector.append(reg)
else:
raise CompilerError('Cannot find %s in VARS' % str(self))
else:
raise CompilerError('Cannot reset size of vector register')
def set_vectorbase(self, vectorbase):
if self.vectorbase is not self:
raise CompilerError('Cannot assign one register' \
'to several vectors')
self.vectorbase = vectorbase
def _new_by_number(self, i):
return Tape.Register(self.reg_type, self.program, size=1, i=i)
def create_vector_elements(self):
if self.vector:
return
elif self.size == 1:
self.vector = [self]
return
self.vector = []
for i in range(self.size):
reg = self._new_by_number(self.i + i)
reg.set_vectorbase(self)
self.vector.append(reg)
def get_all(self):
return self.vector or [self]
def __getitem__(self, index):
if not self.vector:
self.create_vector_elements()
return self.vector[index]
def __len__(self):
return self.size
def activate(self):
""" Activating a register signals that it will at some point be used
in the program.
Inactive registers are reserved for temporaries for CISC instructions. """
if not self._is_active:
self._is_active = True
@property
def value(self):
return self.program.reg_values[self.reg_type][self.i]
@value.setter
def value(self, val):
while (len(self.program.reg_values[self.reg_type]) <= self.i):
self.program.reg_values[self.reg_type] += [0] * INIT_REG_MAX
self.program.reg_values[self.reg_type][self.i] = val
@property
def is_active(self):
return self._is_active
@property
def is_gf2n(self):
return self.reg_type == RegType.ClearGF2N or \
self.reg_type == RegType.SecretGF2N
@property
def is_clear(self):
return self.reg_type == RegType.ClearModp or \
self.reg_type == RegType.ClearGF2N or \
self.reg_type == RegType.ClearInt
def __str__(self):
return self.reg_type + str(self.i)
__repr__ = __str__