Files
MP-SPDZ/Programs/Source/torch_vgg.py
2024-11-21 13:14:54 +11:00

43 lines
1.1 KiB
Python

# this tests the pretrained VGG in secure computation
program.options_from_args()
from Compiler import ml
try:
ml.set_n_threads(int(program.args[2]))
except:
pass
import torchvision
import torch
import numpy
import requests
import io
import PIL
from torchvision import transforms
name = 'vgg' + program.args[1]
model = getattr(torchvision.models, name)(weights='DEFAULT')
r = requests.get('https://github.com/pytorch/hub/raw/master/images/dog.jpg')
input_image = PIL.Image.open(io.BytesIO(r.content))
input_tensor = transforms._presets.ImageClassification(crop_size=32)(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
with torch.no_grad():
output = int(model(input_batch).argmax())
print('Model says %d' % output)
secret_input = sfix.input_tensor_via(
0, numpy.moveaxis(input_batch.numpy(), 1, -1))
layers = ml.layers_from_torch(model, secret_input.shape, 1, input_via=0)
optimizer = ml.Optimizer(layers)
optimizer.time_layers = True
print_ln('Secure computation says %s',
optimizer.eval(secret_input, top=True)[0].reveal())