Files
MP-SPDZ/Math/gfp.h
Marcel Keller 6cc3fccef0 Maintenance.
2023-05-09 14:50:53 +10:00

358 lines
10 KiB
C++

#ifndef _gfp
#define _gfp
#include <iostream>
using namespace std;
#include "Math/gf2n.h"
#include "Math/modp.h"
#include "Math/Zp_Data.h"
#include "Math/field_types.h"
#include "Math/Bit.h"
#include "Math/Setup.h"
#include "Tools/random.h"
#include "Processor/OnlineOptions.h"
#include "Math/modp.hpp"
/* This is a wrapper class for the modp data type
* It is used to be interface compatible with the gfp
* type, which then allows us to template the Share
* data type.
*
* So gfp is used ONLY for the stuff in the finite fields
* we are going to be doing MPC over, not the modp stuff
* for the FHE scheme
*/
template<class T> class Input;
template<class T> class SPDZ;
template<class T> class Square;
class FFT_Data;
template<class T> void generate_prime_setup(string, int, int);
#ifndef GFP_MOD_SZ
#define GFP_MOD_SZ 2
#endif
#if GFP_MOD_SZ > MAX_MOD_SZ
#error GFP_MOD_SZ must be at most MAX_MOD_SZ
#endif
/**
* Type for values in a field defined by integers modulo a prime
* in a specific range for fixed storage.
* It supports basic arithmetic operations and bit-wise operations.
* The latter use the canonical representation in the range `[0, p-1]`.
* ``X`` is a counter to allow several moduli being used at the same time.
* ``L`` is the number of 64-bit limbs, that is,
* the prime has to have bit length in `[64*L-63, 64*L]`.
* See ``gfpvar_`` for a more flexible alternative.
* Convert to ``bigint`` to access the canonical integer representation.
*/
template<int X, int L>
class gfp_ : public ValueInterface
{
typedef modp_<L> modp_type;
modp_type a;
static Zp_Data ZpD;
static thread_local vector<gfp_> powers;
public:
typedef gfp_ value_type;
typedef gfp_ Scalar;
typedef gfp_<X + 1, L> next;
typedef ::Square<gfp_> Square;
typedef FFT_Data FD;
static const int N_LIMBS = L;
static const int MAX_N_BITS = 64 * L;
static const int N_BYTES = sizeof(a);
// must be negative
static const int N_BITS = -1;
static const int MAX_EDABITS = MAX_N_BITS;
template<class T>
static void init(bool mont = true)
{ init_field(T::pr(), mont); }
/**
* Initialize the field.
* @param p: prime modulus
* @param mont: whether to use Montgomery representation
*/
static void init_field(const bigint& p,bool mont=true);
/**
* Initialize the field to a prime of a given bit length.
* @param lgp: bit length
* @param mont: whether to use Montgomery representation
*/
static void init_default(int lgp, bool mont = true);
static void read_or_generate_setup(string dir, const OnlineOptions& opts);
template<class T>
static void generate_setup(string dir, int nplayers, int lgp)
{ generate_prime_setup<T>(dir, nplayers, lgp); }
template<class T>
static void write_setup(int nplayers)
{ write_setup(get_prep_sub_dir<T>(nplayers)); }
static void write_setup(string dir)
{ write_online_setup(dir, pr()); }
static void check_setup(string dir);
static string fake_opts() { return " -lgp " + to_string(length()); }
/**
* Get the prime modulus
*/
static const bigint& pr()
{ return ZpD.pr; }
static int t()
{ return L; }
static Zp_Data& get_ZpD()
{ return ZpD; }
static DataFieldType field_type() { return DATA_INT; }
static char type_char() { return 'p'; }
static string type_short() { return "p"; }
static string type_string() { return "gfp"; }
static int size() { return t() * sizeof(mp_limb_t); }
static int size_in_bits() { return 8 * size(); }
static int length() { return ZpD.pr_bit_length; }
static int n_bits() { return length() - 1; }
static void reqbl(int n);
static bool allows(Dtype type);
static void specification(octetStream& os);
static const true_type invertible;
static const true_type prime_field;
static gfp_ Mul(gfp_ a, gfp_ b) { return a * b; }
static gfp_ power_of_two(bool bit, int exp);
void assign_zero() { assignZero(a,ZpD); }
void assign_one() { assignOne(a,ZpD); }
void assign(const void* buffer) { a.assign(buffer, ZpD.get_t()); }
modp_type get() const { return a; }
unsigned long debug() const { return a.get_limb(0); }
const void* get_ptr() const { return &a.x; }
void* get_ptr() { return &a.x; }
/**
* Initialize to zero.
*/
gfp_() { assignZero(a,ZpD); }
template<int LL>
gfp_(const modp_<LL>& g) { a=g; }
/**
* Convert from integer without range restrictions.
*/
gfp_(const mpz_class& x) { to_modp(a, x, ZpD); }
gfp_(int x) : gfp_(long(x)) {}
gfp_(long x);
gfp_(long long x) : gfp_(long(x)) {}
gfp_(word x) : gfp_(bigint::tmp = x) {}
template<class T>
gfp_(IntBase<T> x) : gfp_(x.get()) {}
/**
* Convert from different domain via canonical integer representation.
*/
template<int Y>
gfp_(const gfp_<Y, L>& x);
gfp_(const gfpvar& other);
template<int K>
gfp_(const SignedZ2<K>& other);
void zero_overhang();
void check();
bool is_zero() const { return isZero(a,ZpD); }
bool is_one() const { return isOne(a,ZpD); }
bool is_bit() const { return is_zero() or is_one(); }
bool equal(const gfp_& y) const { return areEqual(a,y.a,ZpD); }
bool operator==(const gfp_& y) const { return equal(y); }
bool operator!=(const gfp_& y) const { return !equal(y); }
// x+y
void add(octetStream& os)
{ add(os.consume(size())); }
void add(const gfp_& x,const gfp_& y)
{ ZpD.Add<L>(a.x,x.a.x,y.a.x); }
void add(void* x)
{ ZpD.Add<L>(a.x,a.x,(mp_limb_t*)x); }
void sub(const gfp_& x,const gfp_& y)
{ ZpD.Sub<L>(a.x,x.a.x,y.a.x); }
// = x * y
void mul(const gfp_& x,const gfp_& y)
{ a.template mul<L>(x.a,y.a,ZpD); }
gfp_ lazy_add(const gfp_& x) const { return *this + x; }
gfp_ lazy_mul(const gfp_& x) const { return *this * x; }
gfp_ operator+(const gfp_& x) const { gfp_ res; res.add(*this, x); return res; }
gfp_ operator-(const gfp_& x) const { gfp_ res; res.sub(*this, x); return res; }
gfp_ operator*(const gfp_& x) const { gfp_ res; res.mul(*this, x); return res; }
gfp_ operator/(const gfp_& x) const { return *this * x.invert(); }
gfp_& operator+=(const gfp_& x) { add(*this, x); return *this; }
gfp_& operator-=(const gfp_& x) { sub(*this, x); return *this; }
gfp_& operator*=(const gfp_& x) { mul(*this, x); return *this; }
gfp_ operator-() { gfp_ res = *this; res.negate(); return res; }
gfp_ invert() const;
void negate()
{ Negate(a,a,ZpD); }
/**
* Deterministic square root.
*/
gfp_ sqrRoot();
/**
* Sample with uniform distribution.
* @param G randomness generator
* @param n (unused)
*/
void randomize(PRNG& G, int n = -1)
{ (void) n; a.randomize(G,ZpD); }
// faster randomization, see implementation for explanation
void almost_randomize(PRNG& G);
void output(ostream& s,bool human) const
{ a.output(s,ZpD,human); }
void input(istream& s,bool human)
{ a.input(s,ZpD,human); }
/**
* Human-readable output in the range `[-p/2, p/2]`.
* @param s output stream
* @param x value
*/
friend ostream& operator<<(ostream& s,const gfp_& x)
{ x.output(s,true);
return s;
}
/**
* Human-readable input without range restrictions
* @param s input stream
* @param x value
*/
friend istream& operator>>(istream& s,gfp_& x)
{ x.input(s,true);
return s;
}
/* Bitwise Ops
* - Converts gfp args to bigints and then converts answer back to gfp
*/
gfp_ operator&(const gfp_& x) { return (bigint::tmp = *this) &= bigint(x); }
gfp_ operator^(const gfp_& x) { return (bigint::tmp = *this) ^= bigint(x); }
gfp_ operator|(const gfp_& x) { return (bigint::tmp = *this) |= bigint(x); }
gfp_ operator<<(int i) const;
gfp_ operator>>(int i) const;
gfp_ operator<<(const gfp_& i) const;
gfp_ operator>>(const gfp_& i) const;
gfp_& operator&=(const gfp_& x) { *this = *this & x; return *this; }
gfp_& operator<<=(int i) { *this << i; return *this; }
gfp_& operator>>=(int i) { *this >> i; return *this; }
void force_to_bit() { throw runtime_error("impossible"); }
/**
* Append to buffer in native format.
* @param o buffer
* @param n (unused)
*/
void pack(octetStream& o, int n = -1) const
{ (void) n; a.pack(o); }
/**
* Read from buffer in native format
* @param o buffer
* @param n (unused)
*/
void unpack(octetStream& o, int n = -1)
{ (void) n; a.unpack(o); }
void convert_destroy(bigint& x) { a.convert_destroy(x, ZpD); }
void to(bigint& res) const
{
res = *this;
}
// Convert representation to and from a bigint number
friend void to_bigint(bigint& ans,const gfp_& x,bool reduce=true)
{ x.a.template to_bigint<L>(ans, x.ZpD, reduce); }
friend void to_gfp(gfp_& ans,const bigint& x)
{ to_modp(ans.a,x,ans.ZpD); }
};
typedef gfp_<0, GFP_MOD_SZ> gfp0;
typedef gfp_<1, GFP_MOD_SZ> gfp1;
template<int X, int L>
Zp_Data gfp_<X, L>::ZpD;
template<int X, int L>
thread_local vector<gfp_<X, L>> gfp_<X, L>::powers;
template<int X, int L>
gfp_<X, L>::gfp_(long x)
{
if (x == 0)
assign_zero();
else if (x == 1)
assign_one();
else
*this = bigint::tmp = x;
}
template<int X, int L>
template<int Y>
gfp_<X, L>::gfp_(const gfp_<Y, L>& x)
{
to_bigint(bigint::tmp, x);
*this = bigint::tmp;
}
template<int X, int L>
template<int K>
gfp_<X, L>::gfp_(const SignedZ2<K>& other)
{
if (K >= ZpD.pr_bit_length)
*this = bigint::tmp = other;
else
a.convert(abs(other).get(), other.size_in_limbs(), ZpD, other.negative());
}
template <int X, int L>
inline void gfp_<X, L>::zero_overhang()
{
a.x[t() - 1] &= ZpD.overhang_mask();
}
template<class T>
void to_signed_bigint(bigint& ans, const T& x)
{
ans = x;
// get sign and abs(x)
if (ans > T::get_ZpD().pr_half)
ans -= T::pr();
}
#endif