Files
MP-SPDZ/Programs/Source/falcon_alex.mpc
Marcel Keller 6cc3fccef0 Maintenance.
2023-05-09 14:50:53 +10:00

101 lines
2.8 KiB
Plaintext

from Compiler.ml import keras
import Compiler.ml as tf
try:
n_epochs = int(program.args[1])
except (ValueError, IndexError):
n_epochs = 20
try:
batch_size = int(program.args[2])
except (ValueError, IndexError):
batch_size = 128
try:
n_threads = int(program.args[3])
except (ValueError, IndexError):
n_threads = 36
#Instantiation
AlexNet = []
padding = 'same'
batchnorm = 'batchnorm' in program.args
#1st Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=96, input_shape=(32,32,3), kernel_size=(11,11), strides=(4,4), padding=9))
AlexNet.append(keras.layers.Activation('relu'))
AlexNet.append(keras.layers.MaxPooling2D(pool_size=3, strides=(2,2)))
if batchnorm:
AlexNet.append(keras.layers.BatchNormalization())
#2nd Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1), padding=1))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm:
AlexNet.append(keras.layers.BatchNormalization())
AlexNet.append(keras.layers.MaxPooling2D(pool_size=(2,2), strides=1))
#3rd Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=1))
AlexNet.append(keras.layers.Activation('relu'))
#4th Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=1))
AlexNet.append(keras.layers.Activation('relu'))
#5th Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding=1))
AlexNet.append(keras.layers.Activation('relu'))
#Passing it to a Fully Connected layer
# 1st Fully Connected Layer
AlexNet.append(keras.layers.Dense(256))
AlexNet.append(keras.layers.Activation('relu'))
if 'dropout' in program.args:
AlexNet.append(keras.layers.Dropout(0.5))
#2nd Fully Connected Layer
AlexNet.append(keras.layers.Dense(256))
AlexNet.append(keras.layers.Activation('relu'))
if 'dropout' in program.args:
AlexNet.append(keras.layers.Dropout(0.5))
#Output Layer
AlexNet.append(keras.layers.Dense(10))
tf.set_n_threads(n_threads)
program.options_from_args()
sfix.set_precision_from_args(program, adapt_ring=True)
training_samples = MultiArray([50000, 32, 32, 3], sfix)
training_labels = MultiArray([50000, 10], sint)
test_samples = MultiArray([10000, 32, 32, 3], sfix)
test_labels = MultiArray([10000, 10], sint)
if 'no_acc' not in program.args:
training_labels.input_from(0)
training_samples.input_from(0)
test_labels.input_from(0)
test_samples.input_from(0)
model = tf.keras.models.Sequential(AlexNet)
model.compile_by_args(program)
model.build(training_samples.sizes)
model.summary()
opt = model.fit(
training_samples,
training_labels,
epochs=n_epochs,
batch_size=batch_size,
validation_data=(test_samples, test_labels)
)