Files
MP-SPDZ/Math/gfp.h

232 lines
6.6 KiB
C++

#ifndef _gfp
#define _gfp
#include <iostream>
using namespace std;
#include "Math/gf2n.h"
#include "Math/modp.h"
#include "Math/Zp_Data.h"
#include "Math/field_types.h"
#include "Tools/random.h"
/* This is a wrapper class for the modp data type
* It is used to be interface compatible with the gfp
* type, which then allows us to template the Share
* data type.
*
* So gfp is used ONLY for the stuff in the finite fields
* we are going to be doing MPC over, not the modp stuff
* for the FHE scheme
*/
template<class T> class Input;
template<class T> class SPDZ;
class gfp
{
modp a;
static Zp_Data ZpD;
public:
typedef gfp value_type;
typedef MAC_Check<gfp> MC;
typedef Input<gfp> Inp;
typedef PrivateOutput<gfp> PO;
typedef SPDZ<gfp> Protocol;
static void init_field(const bigint& p,bool mont=true)
{ ZpD.init(p,mont); }
static void init_default(int lgp);
static bigint pr()
{ return ZpD.pr; }
static int t()
{ return ZpD.get_t(); }
static Zp_Data& get_ZpD()
{ return ZpD; }
static DataFieldType field_type() { return DATA_INT; }
static char type_char() { return 'p'; }
static string type_string() { return "gfp"; }
static int size() { return t() * sizeof(mp_limb_t); }
static void reqbl(int n);
static bool allows(Dtype type);
void assign(const gfp& g) { a=g.a; }
void assign_zero() { assignZero(a,ZpD); }
void assign_one() { assignOne(a,ZpD); }
void assign(word aa) { bigint::tmp=aa; to_gfp(*this,bigint::tmp); }
void assign(long aa)
{
if (aa == 0)
assignZero(a, ZpD);
else
to_gfp(*this, bigint::tmp = aa);
}
void assign(int aa) { assign(long(aa)); }
void assign(const char* buffer) { a.assign(buffer, ZpD.get_t()); }
modp get() const { return a; }
unsigned long debug() const { return a.get_limb(0); }
// Assumes prD behind x is equal to ZpD
void assign(modp& x) { a=x; }
gfp() { assignZero(a,ZpD); }
gfp(const gfp& g) { a=g.a; }
gfp(const modp& g) { a=g; }
gfp(const __m128i& x) { *this=x; }
gfp(const int128& x) { *this=x.a; }
gfp(const bigint& x) { to_modp(a, x, ZpD); }
gfp(int x) { assign(x); }
~gfp() { ; }
gfp& operator=(const gfp& g)
{ if (&g!=this) { a=g.a; }
return *this;
}
gfp& operator=(const __m128i other)
{
memcpy(a.x, &other, sizeof(other));
return *this;
}
void to_m128i(__m128i& ans)
{
memcpy(&ans, a.x, sizeof(ans));
}
__m128i to_m128i()
{
return _mm_loadu_si128((__m128i*)a.x);
}
bool is_zero() const { return isZero(a,ZpD); }
bool is_one() const { return isOne(a,ZpD); }
bool is_bit() const { return is_zero() or is_one(); }
bool equal(const gfp& y) const { return areEqual(a,y.a,ZpD); }
bool operator==(const gfp& y) const { return equal(y); }
bool operator!=(const gfp& y) const { return !equal(y); }
// x+y
template <int T>
void add(const gfp& x,const gfp& y)
{ Add<T>(a,x.a,y.a,ZpD); }
template <int T>
void add(const gfp& x)
{ Add<T>(a,a,x.a,ZpD); }
template <int T>
void add(void* x)
{ ZpD.Add<T>(a.x,a.x,(mp_limb_t*)x); }
template <int T>
void add(octetStream& os)
{ add<T>(os.consume(size())); }
void add(const gfp& x,const gfp& y)
{ Add(a,x.a,y.a,ZpD); }
void add(const gfp& x)
{ Add(a,a,x.a,ZpD); }
void add(void* x)
{ ZpD.Add(a.x,a.x,(mp_limb_t*)x); }
void sub(const gfp& x,const gfp& y)
{ Sub(a,x.a,y.a,ZpD); }
void sub(const gfp& x)
{ Sub(a,a,x.a,ZpD); }
// = x * y
void mul(const gfp& x,const gfp& y)
{ Mul(a,x.a,y.a,ZpD); }
void mul(const gfp& x)
{ Mul(a,a,x.a,ZpD); }
gfp operator+(const gfp& x) const { gfp res; res.add(*this, x); return res; }
gfp operator-(const gfp& x) const { gfp res; res.sub(*this, x); return res; }
gfp operator*(const gfp& x) const { gfp res; res.mul(*this, x); return res; }
gfp operator/(const gfp& x) const { gfp tmp; tmp.invert(x); return *this * tmp; }
gfp& operator+=(const gfp& x) { add(x); return *this; }
gfp& operator-=(const gfp& x) { sub(x); return *this; }
gfp& operator*=(const gfp& x) { mul(x); return *this; }
gfp operator-() { gfp res = *this; res.negate(); return res; }
void square(const gfp& aa)
{ Sqr(a,aa.a,ZpD); }
void square()
{ Sqr(a,a,ZpD); }
void invert()
{ Inv(a,a,ZpD); }
void invert(const gfp& aa)
{ Inv(a,aa.a,ZpD); }
void negate()
{ Negate(a,a,ZpD); }
void power(long i)
{ Power(a,a,i,ZpD); }
// deterministic square root
gfp sqrRoot();
void randomize(PRNG& G)
{ a.randomize(G,ZpD); }
// faster randomization, see implementation for explanation
void almost_randomize(PRNG& G);
void output(ostream& s,bool human) const
{ a.output(s,ZpD,human); }
void input(istream& s,bool human)
{ a.input(s,ZpD,human); }
friend ostream& operator<<(ostream& s,const gfp& x)
{ x.output(s,true);
return s;
}
friend istream& operator>>(istream& s,gfp& x)
{ x.input(s,true);
return s;
}
/* Bitwise Ops
* - Converts gfp args to bigints and then converts answer back to gfp
*/
void AND(const gfp& x,const gfp& y);
void XOR(const gfp& x,const gfp& y);
void OR(const gfp& x,const gfp& y);
void AND(const gfp& x,const bigint& y);
void XOR(const gfp& x,const bigint& y);
void OR(const gfp& x,const bigint& y);
void SHL(const gfp& x,int n);
void SHR(const gfp& x,int n);
void SHL(const gfp& x,const bigint& n);
void SHR(const gfp& x,const bigint& n);
gfp operator&(const gfp& x) { gfp res; res.AND(*this, x); return res; }
gfp operator^(const gfp& x) { gfp res; res.XOR(*this, x); return res; }
gfp operator|(const gfp& x) { gfp res; res.OR(*this, x); return res; }
gfp operator<<(int i) { gfp res; res.SHL(*this, i); return res; }
gfp operator>>(int i) { gfp res; res.SHR(*this, i); return res; }
// Pack and unpack in native format
// i.e. Dont care about conversion to human readable form
void pack(octetStream& o) const
{ a.pack(o,ZpD); }
void unpack(octetStream& o)
{ a.unpack(o,ZpD); }
void convert_destroy(bigint& x) { a.convert_destroy(x, ZpD); }
// Convert representation to and from a bigint number
friend void to_bigint(bigint& ans,const gfp& x,bool reduce=true)
{ to_bigint(ans,x.a,x.ZpD,reduce); }
friend void to_gfp(gfp& ans,const bigint& x)
{ to_modp(ans.a,x,ans.ZpD); }
};
void to_signed_bigint(bigint& ans,const gfp& x);
#endif