Files
MP-SPDZ/Processor/Processor.hpp

614 lines
20 KiB
C++

#include "Processor/Processor.h"
#include "Networking/STS.h"
#include "Auth/MAC_Check.h"
#include "Auth/ReplicatedMC.h"
#include "Auth/fake-stuff.h"
#include "Processor/ReplicatedInput.hpp"
#include "Processor/ReplicatedPrivateOutput.hpp"
#include <sodium.h>
#include <string>
template <class T>
SubProcessor<T>::SubProcessor(ArithmeticProcessor& Proc, typename T::MAC_Check& MC,
Preprocessing<T>& DataF, Player& P) :
Proc(Proc), MC(MC), P(P), DataF(DataF), protocol(P), input(*this, MC)
{
DataF.set_protocol(protocol);
}
template<class sint, class sgf2n>
Processor<sint, sgf2n>::Processor(int thread_num,Player& P,
typename sgf2n::MAC_Check& MC2,typename sint::MAC_Check& MCp,
Machine<sint, sgf2n>& machine,
const Program& program)
: ArithmeticProcessor(machine.opts, thread_num),DataF(machine, &Procp, &Proc2),P(P),
MC2(MC2),MCp(MCp),machine(machine),
Proc2(*this,MC2,DataF.DataF2,P),Procp(*this,MCp,DataF.DataFp,P),
privateOutput2(Proc2),privateOutputp(Procp),
external_clients(ExternalClients(P.my_num(), machine.prep_dir_prefix)),
binary_file_io(Binary_File_IO())
{
reset(program,0);
public_input.open(get_filename("Programs/Public-Input/",false).c_str());
private_input_filename = (get_filename(PREP_DIR "Private-Input-",true));
private_input.open(private_input_filename.c_str());
public_output.open(get_filename(PREP_DIR "Public-Output-",true).c_str(), ios_base::out);
private_output.open(get_filename(PREP_DIR "Private-Output-",true).c_str(), ios_base::out);
open_input_file(P.my_num(), thread_num);
secure_prng.ReSeed();
out.activate(P.my_num() == 0 or machine.opts.interactive);
}
template<class sint, class sgf2n>
Processor<sint, sgf2n>::~Processor()
{
cerr << "Opened " << sent << " elements in " << rounds << " rounds" << endl;
}
template<class sint, class sgf2n>
string Processor<sint, sgf2n>::get_filename(const char* prefix, bool use_number)
{
stringstream filename;
filename << prefix;
if (!use_number)
filename << machine.progname;
if (use_number)
filename << P.my_num();
if (thread_num > 0)
filename << "-" << thread_num;
cerr << "Opening file " << filename.str() << endl;
return filename.str();
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::reset(const Program& program,int arg)
{
reg_max2 = program.num_reg(GF2N);
reg_maxp = program.num_reg(MODP);
reg_maxi = program.num_reg(INT);
Proc2.resize(reg_max2);
Procp.resize(reg_maxp);
Ci.resize(reg_maxi);
this->arg = arg;
#ifdef DEBUG
rw2.resize(2*reg_max2);
for (int i=0; i<2*reg_max2; i++) { rw2[i]=0; }
rwp.resize(2*reg_maxp);
for (int i=0; i<2*reg_maxp; i++) { rwp[i]=0; }
rwi.resize(2*reg_maxi);
for (int i=0; i<2*reg_maxi; i++) { rwi[i]=0; }
#endif
}
#include "Networking/sockets.h"
#include "Math/Setup.h"
// Write socket (typically SPDZ engine -> external client), for different register types.
// RegType and SecrecyType determines how registers are read and the socket stream is packed.
// If message_type is > 0, send message_type in bytes 0 - 3, to allow an external client to
// determine the data structure being sent in a message.
// Encryption is enabled if key material (for DH Auth Encryption and/or STS protocol) has been already setup.
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::write_socket(const RegType reg_type, const SecrecyType secrecy_type, const bool send_macs,
int socket_id, int message_type, const vector<int>& registers)
{
if (socket_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << socket_id << endl;
return;
}
int m = registers.size();
socket_stream.reset_write_head();
//First 4 bytes is message_type (unless indicate not needed)
if (message_type != 0) {
socket_stream.store(message_type);
}
for (int i = 0; i < m; i++)
{
if (reg_type == MODP && secrecy_type == SECRET) {
// Send vector of secret shares and optionally macs
get_Sp_ref(registers[i]).pack(socket_stream, send_macs);
}
else if (reg_type == MODP && secrecy_type == CLEAR) {
// Send vector of clear public field elements
get_Cp_ref(registers[i]).pack(socket_stream);
}
else if (reg_type == INT && secrecy_type == CLEAR) {
// Send vector of 32-bit clear ints
socket_stream.store((int&)get_Ci_ref(registers[i]));
}
else {
stringstream ss;
ss << "Write socket instruction with unknown reg type " << reg_type <<
" and secrecy type " << secrecy_type << "." << endl;
throw Processor_Error(ss.str());
}
}
// Apply DH Auth encryption if session keys have been created.
map<int,octet*>::iterator it = external_clients.symmetric_client_keys.find(socket_id);
if (it != external_clients.symmetric_client_keys.end()) {
socket_stream.encrypt(it->second);
}
// Apply STS commsec encryption if session keys have been created.
try {
maybe_encrypt_sequence(socket_id);
socket_stream.Send(external_clients.external_client_sockets[socket_id]);
}
catch (bad_value& e) {
cerr << "Send error thrown when writing " << m << " values of type " << reg_type << " to socket id "
<< socket_id << "." << endl;
}
}
// Receive vector of 32-bit clear ints
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::read_socket_ints(int client_id, const vector<int>& registers)
{
if (client_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << client_id << endl;
return;
}
int m = registers.size();
socket_stream.reset_write_head();
socket_stream.Receive(external_clients.external_client_sockets[client_id]);
maybe_decrypt_sequence(client_id);
for (int i = 0; i < m; i++)
{
int val;
socket_stream.get(val);
write_Ci(registers[i], (long)val);
}
}
// Receive vector of public field elements
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::read_socket_vector(int client_id, const vector<int>& registers)
{
if (client_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << client_id << endl;
return;
}
int m = registers.size();
socket_stream.reset_write_head();
socket_stream.Receive(external_clients.external_client_sockets[client_id]);
maybe_decrypt_sequence(client_id);
for (int i = 0; i < m; i++)
{
get_Cp_ref(registers[i]).unpack(socket_stream);
}
}
// Receive vector of field element shares over private channel
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::read_socket_private(int client_id, const vector<int>& registers, bool read_macs)
{
if (client_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << client_id << endl;
return;
}
int m = registers.size();
socket_stream.reset_write_head();
socket_stream.Receive(external_clients.external_client_sockets[client_id]);
maybe_decrypt_sequence(client_id);
map<int,octet*>::iterator it = external_clients.symmetric_client_keys.find(client_id);
if (it != external_clients.symmetric_client_keys.end())
{
socket_stream.decrypt(it->second);
}
for (int i = 0; i < m; i++)
{
get_Sp_ref(registers[i]).unpack(socket_stream, read_macs);
}
}
// Read socket for client public key as 8 ints, calculate session key for client.
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::read_client_public_key(int client_id, const vector<int>& registers) {
read_socket_ints(client_id, registers);
// After read into registers, need to extract values
vector<int> client_public_key (registers.size(), 0);
for(unsigned int i = 0; i < registers.size(); i++) {
client_public_key[i] = (int&)get_Ci_ref(registers[i]);
}
external_clients.generate_session_key_for_client(client_id, client_public_key);
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::init_secure_socket_internal(int client_id, const vector<int>& registers) {
external_clients.symmetric_client_commsec_send_keys.erase(client_id);
external_clients.symmetric_client_commsec_recv_keys.erase(client_id);
unsigned char client_public_bytes[crypto_sign_PUBLICKEYBYTES];
sts_msg1_t m1;
sts_msg2_t m2;
sts_msg3_t m3;
external_clients.load_server_keys_once();
external_clients.require_ed25519_keys();
// Validate inputs and state
if(registers.size() != 8) {
throw "Invalid call to init_secure_socket.";
}
if (client_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << client_id << endl;
throw "No socket connection exists for client";
}
// Extract client long term public key into bytes
vector<int> client_public_key (registers.size(), 0);
for(unsigned int i = 0; i < registers.size(); i++) {
client_public_key[i] = (int&)get_Ci_ref(registers[i]);
}
external_clients.curve25519_ints_to_bytes(client_public_bytes, client_public_key);
// Start Station to Station Protocol
STS ke(client_public_bytes, external_clients.server_publickey_ed25519, external_clients.server_secretkey_ed25519);
m1 = ke.send_msg1();
socket_stream.reset_write_head();
socket_stream.append(m1.bytes, sizeof m1.bytes);
socket_stream.Send(external_clients.external_client_sockets[client_id]);
socket_stream.ReceiveExpected(external_clients.external_client_sockets[client_id],
96);
socket_stream.consume(m2.pubkey, sizeof m2.pubkey);
socket_stream.consume(m2.sig, sizeof m2.sig);
m3 = ke.recv_msg2(m2);
socket_stream.reset_write_head();
socket_stream.append(m3.bytes, sizeof m3.bytes);
socket_stream.Send(external_clients.external_client_sockets[client_id]);
// Use results of STS to generate send and receive keys.
vector<unsigned char> sendKey = ke.derive_secret(crypto_secretbox_KEYBYTES);
vector<unsigned char> recvKey = ke.derive_secret(crypto_secretbox_KEYBYTES);
external_clients.symmetric_client_commsec_send_keys[client_id] = make_pair(sendKey,0);
external_clients.symmetric_client_commsec_recv_keys[client_id] = make_pair(recvKey,0);
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::init_secure_socket(int client_id, const vector<int>& registers) {
try {
init_secure_socket_internal(client_id, registers);
} catch (char const *e) {
cerr << "STS initiator role failed with: " << e << endl;
throw Processor_Error("STS initiator failed");
}
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::resp_secure_socket(int client_id, const vector<int>& registers) {
try {
resp_secure_socket_internal(client_id, registers);
} catch (char const *e) {
cerr << "STS responder role failed with: " << e << endl;
throw Processor_Error("STS responder failed");
}
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::resp_secure_socket_internal(int client_id, const vector<int>& registers) {
external_clients.symmetric_client_commsec_send_keys.erase(client_id);
external_clients.symmetric_client_commsec_recv_keys.erase(client_id);
unsigned char client_public_bytes[crypto_sign_PUBLICKEYBYTES];
sts_msg1_t m1;
sts_msg2_t m2;
sts_msg3_t m3;
external_clients.load_server_keys_once();
external_clients.require_ed25519_keys();
// Validate inputs and state
if(registers.size() != 8) {
throw "Invalid call to init_secure_socket.";
}
if (client_id >= (int)external_clients.external_client_sockets.size())
{
cerr << "No socket connection exists for client id " << client_id << endl;
throw "No socket connection exists for client";
}
vector<int> client_public_key (registers.size(), 0);
for(unsigned int i = 0; i < registers.size(); i++) {
client_public_key[i] = (int&)get_Ci_ref(registers[i]);
}
external_clients.curve25519_ints_to_bytes(client_public_bytes, client_public_key);
// Start Station to Station Protocol for the responder
STS ke(client_public_bytes, external_clients.server_publickey_ed25519, external_clients.server_secretkey_ed25519);
socket_stream.reset_read_head();
socket_stream.ReceiveExpected(external_clients.external_client_sockets[client_id],
32);
socket_stream.consume(m1.bytes, sizeof m1.bytes);
m2 = ke.recv_msg1(m1);
socket_stream.reset_write_head();
socket_stream.append(m2.pubkey, sizeof m2.pubkey);
socket_stream.append(m2.sig, sizeof m2.sig);
socket_stream.Send(external_clients.external_client_sockets[client_id]);
socket_stream.ReceiveExpected(external_clients.external_client_sockets[client_id],
64);
socket_stream.consume(m3.bytes, sizeof m3.bytes);
ke.recv_msg3(m3);
// Use results of STS to generate send and receive keys.
vector<unsigned char> recvKey = ke.derive_secret(crypto_secretbox_KEYBYTES);
vector<unsigned char> sendKey = ke.derive_secret(crypto_secretbox_KEYBYTES);
external_clients.symmetric_client_commsec_recv_keys[client_id] = make_pair(recvKey,0);
external_clients.symmetric_client_commsec_send_keys[client_id] = make_pair(sendKey,0);
}
// Read share data from a file starting at file_pos until registers filled.
// file_pos_register is written with new file position (-1 is eof).
// Tolerent to no file if no shares yet persisted.
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::read_shares_from_file(int start_file_posn, int end_file_pos_register, const vector<int>& data_registers) {
string filename;
filename = "Persistence/Transactions-P" + to_string(P.my_num()) + ".data";
unsigned int size = data_registers.size();
vector< sint > outbuf(size);
int end_file_posn = start_file_posn;
try {
binary_file_io.read_from_file(filename, outbuf, start_file_posn, end_file_posn);
for (unsigned int i = 0; i < size; i++)
{
get_Sp_ref(data_registers[i]) = outbuf[i];
}
write_Ci(end_file_pos_register, (long)end_file_posn);
}
catch (file_missing& e) {
cerr << "Got file missing error, will return -2. " << e.what() << endl;
write_Ci(end_file_pos_register, (long)-2);
}
}
// Append share data in data_registers to end of file. Expects Persistence directory to exist.
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::write_shares_to_file(const vector<int>& data_registers) {
string filename;
filename = "Persistence/Transactions-P" + to_string(P.my_num()) + ".data";
unsigned int size = data_registers.size();
vector< sint > inpbuf (size);
for (unsigned int i = 0; i < size; i++)
{
inpbuf[i] = get_Sp_ref(data_registers[i]);
}
binary_file_io.write_to_file(filename, inpbuf);
}
template <class T>
void SubProcessor<T>::POpen_Start(const vector<int>& reg,const Player& P,int size)
{
int sz=reg.size();
Sh_PO.clear();
Sh_PO.reserve(sz*size);
if (size>1)
{
for (typename vector<int>::const_iterator reg_it=reg.begin();
reg_it!=reg.end(); reg_it++)
{
auto begin=S.begin()+*reg_it;
Sh_PO.insert(Sh_PO.end(),begin,begin+size);
}
}
else
{
for (int i=0; i<sz; i++)
{ Sh_PO.push_back(S[reg[i]]); }
}
PO.resize(sz*size);
MC.POpen_Begin(PO,Sh_PO,P);
}
template <class T>
void SubProcessor<T>::POpen_Stop(const vector<int>& reg,const Player& P,int size)
{
int sz=reg.size();
PO.resize(sz*size);
MC.POpen_End(PO,Sh_PO,P);
if (size>1)
{
auto PO_it=PO.begin();
for (typename vector<int>::const_iterator reg_it=reg.begin();
reg_it!=reg.end(); reg_it++)
{
for (auto C_it=C.begin()+*reg_it;
C_it!=C.begin()+*reg_it+size; C_it++)
{
*C_it=*PO_it;
PO_it++;
}
}
}
else
{
for (unsigned int i=0; i<reg.size(); i++)
{ C[reg[i]] = PO[i]; }
}
Proc.sent += reg.size() * size;
Proc.rounds++;
}
inline void unzip_open(vector<int>& dest, vector<int>& source, const vector<int>& reg)
{
int n = reg.size() / 2;
source.resize(n);
dest.resize(n);
for (int i = 0; i < n; i++)
{
source[i] = reg[2 * i + 1];
dest[i] = reg[2 * i];
}
}
template<class T>
void SubProcessor<T>::POpen(const vector<int>& reg, const Player& P,
int size)
{
vector<int> source, dest;
unzip_open(dest, source, reg);
POpen_Start(source, P, size);
POpen_Stop(dest, P, size);
}
template<class T>
void SubProcessor<T>::muls(const vector<int>& reg, int size)
{
assert(reg.size() % 3 == 0);
int n = reg.size() / 3;
SubProcessor<T>& proc = *this;
protocol.init_mul(&proc);
for (int i = 0; i < n; i++)
for (int j = 0; j < size; j++)
{
auto& x = proc.S[reg[3 * i + 1] + j];
auto& y = proc.S[reg[3 * i + 2] + j];
protocol.prepare_mul(x, y);
}
protocol.exchange();
for (int i = 0; i < n; i++)
for (int j = 0; j < size; j++)
{
proc.S[reg[3 * i] + j] = protocol.finalize_mul();
}
protocol.counter += n * size;
}
template<class T>
void SubProcessor<T>::mulrs(const vector<int>& reg)
{
assert(reg.size() % 4 == 0);
int n = reg.size() / 4;
SubProcessor<T>& proc = *this;
protocol.init_mul(&proc);
for (int i = 0; i < n; i++)
for (int j = 0; j < reg[4 * i]; j++)
{
auto& x = proc.S[reg[4 * i + 2] + j];
auto& y = proc.S[reg[4 * i + 3]];
protocol.prepare_mul(x, y);
}
protocol.exchange();
for (int i = 0; i < n; i++)
{
for (int j = 0; j < reg[4 * i]; j++)
{
proc.S[reg[4 * i + 1] + j] = protocol.finalize_mul();
}
protocol.counter += reg[4 * i];
}
}
template<class T>
void SubProcessor<T>::dotprods(const vector<int>& reg)
{
protocol.init_dotprod(this);
auto it = reg.begin();
while (it != reg.end())
{
auto next = it + *it;
it += 2;
while (it != next)
{
protocol.prepare_dotprod(S[*it], S[*(it + 1)]);
it += 2;
}
protocol.next_dotprod();
}
protocol.exchange();
it = reg.begin();
while (it != reg.end())
{
auto next = it + *it;
it++;
T& dest = S[*it];
dest = protocol.finalize_dotprod((next - it) / 2);
it = next;
}
}
template<class sint, class sgf2n>
ostream& operator<<(ostream& s,const Processor<sint, sgf2n>& P)
{
s << "Processor State" << endl;
s << "Char 2 Registers" << endl;
s << "Val\tClearReg\tSharedReg" << endl;
for (int i=0; i<P.reg_max2; i++)
{ s << i << "\t";
P.read_C2(i).output(s,true);
s << "\t";
P.read_S2(i).output(s,true);
s << endl;
}
s << "Char p Registers" << endl;
s << "Val\tClearReg\tSharedReg" << endl;
for (int i=0; i<P.reg_maxp; i++)
{ s << i << "\t";
P.read_Cp(i).output(s,true);
s << "\t";
P.read_Sp(i).output(s,true);
s << endl;
}
return s;
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::maybe_decrypt_sequence(int client_id)
{
map<int, pair<vector<octet>,uint64_t> >::iterator it_cs = external_clients.symmetric_client_commsec_recv_keys.find(client_id);
if (it_cs != external_clients.symmetric_client_commsec_recv_keys.end())
{
socket_stream.decrypt_sequence(&it_cs->second.first[0], it_cs->second.second);
it_cs->second.second++;
}
}
template<class sint, class sgf2n>
void Processor<sint, sgf2n>::maybe_encrypt_sequence(int client_id)
{
map<int, pair<vector<octet>,uint64_t> >::iterator it_cs = external_clients.symmetric_client_commsec_send_keys.find(client_id);
if (it_cs != external_clients.symmetric_client_commsec_send_keys.end())
{
socket_stream.encrypt_sequence(&it_cs->second.first[0], it_cs->second.second);
it_cs->second.second++;
}
}