Files
MP-SPDZ/Compiler/allocator.py
2025-12-24 13:47:42 +11:00

901 lines
39 KiB
Python

import itertools, time
from collections import defaultdict, deque
from Compiler.exceptions import *
from Compiler.config import *
from Compiler.instructions import *
from Compiler.instructions_base import *
from Compiler.util import *
import Compiler.graph
import Compiler.program
import heapq, itertools
import operator
import sys
from functools import reduce
class BlockAllocator:
""" Manages freed memory blocks. """
def __init__(self):
self.by_logsize = [defaultdict(set) for i in range(64)]
self.by_address = {}
def by_size(self, size):
if size >= 2 ** 64:
raise CompilerError('size exceeds addressing capability')
return self.by_logsize[int(math.log(size, 2))][size]
def push(self, address, size):
end = address + size
if end in self.by_address:
next_size = self.by_address.pop(end)
self.by_size(next_size).remove(end)
size += next_size
self.by_size(size).add(address)
self.by_address[address] = size
def pop(self, size):
if len(self.by_size(size)) > 0:
block_size = size
else:
logsize = int(math.log(size, 2))
for block_size, addresses in self.by_logsize[logsize].items():
if block_size >= size and len(addresses) > 0:
break
else:
done = False
for x in self.by_logsize[logsize + 1:]:
for block_size, addresses in sorted(x.items()):
if len(addresses) > 0:
done = True
break
if done:
break
else:
block_size = 0
if block_size >= size:
addr = self.by_size(block_size).pop()
del self.by_address[addr]
diff = block_size - size
if diff:
self.by_size(diff).add(addr + size)
self.by_address[addr + size] = diff
return addr
class AllocRange:
def __init__(self, base=0):
self.base = base
self.top = base
self.limit = base
self.grow = True
self.pool = defaultdict(set)
def alloc(self, size):
if self.pool[size]:
return self.pool[size].pop()
elif self.grow or self.top + size <= self.limit:
res = self.top
self.top += size
self.limit = max(self.limit, self.top)
if res >= REG_MAX:
raise RegisterOverflowError(size)
return res
def free(self, base, size):
assert self.base <= base < self.top
self.pool[size].add(base)
def stop_growing(self):
self.grow = False
def consolidate(self):
regs = []
for size, pool in self.pool.items():
for base in pool:
regs.append((base, size))
for base, size in reversed(sorted(regs)):
if base + size == self.top:
self.top -= size
self.pool[size].remove(base)
regs.pop()
else:
if program.Program.prog.verbose:
print('cannot free %d register blocks '
'by a gap of %d at %d' %
(len(regs), self.top - size - base, base))
break
class AllocPool:
def __init__(self, parent=None):
self.ranges = defaultdict(lambda: [AllocRange()])
self.by_base = {}
self.parent = parent
def alloc(self, reg_type, size):
for r in self.ranges[reg_type]:
res = r.alloc(size)
if res is not None:
self.by_base[reg_type, res] = r
return res
def free(self, reg):
try:
r = self.by_base.pop((reg.reg_type, reg.i))
r.free(reg.i, reg.size)
except KeyError:
try:
self.parent.free(reg)
except:
if program.Program.prog.options.debug:
print('Error with freeing register with trace:')
print(util.format_trace(reg.caller))
print()
def new_ranges(self, min_usage):
for t, n in min_usage.items():
r = self.ranges[t][-1]
assert (n >= r.limit)
if r.limit < n:
r.stop_growing()
self.ranges[t].append(AllocRange(n))
def consolidate(self):
for r in self.ranges.values():
for rr in r:
rr.consolidate()
def n_fragments(self):
if self.ranges:
return max(len(r) for r in self.ranges)
else:
return 0
class StraightlineAllocator:
"""Allocate variables in a straightline program using n registers.
It is based on the precondition that every register is only defined once."""
def __init__(self, n, program):
self.alloc = dict_by_id()
self.max_usage = defaultdict(lambda: 0)
self.defined = dict_by_id()
self.dealloc = set_by_id()
assert(n == REG_MAX)
self.program = program
self.old_pool = None
self.unused = defaultdict(lambda: 0)
def alloc_reg(self, reg, free):
base = reg.vectorbase
if base in self.alloc:
# already allocated
return
reg_type = reg.reg_type
size = base.size
res = free.alloc(reg_type, size)
self.alloc[base] = res
base.i = self.alloc[base]
for dup in base.duplicates:
dup = dup.vectorbase
self.alloc[dup] = self.alloc[base]
dup.i = self.alloc[base]
if not dup.dup_count:
dup.dup_count = len(base.duplicates)
def dealloc_reg(self, reg, inst, free):
if reg.vector:
self.dealloc |= reg.vector
else:
self.dealloc.add(reg)
reg.duplicates.remove(reg)
base = reg.vectorbase
seen = set_by_id()
to_check = set_by_id()
to_check.add(base)
while to_check:
dup = to_check.pop()
if dup not in seen:
seen.add(dup)
base = dup.vectorbase
if base.vector:
for i in base.vector:
if i not in self.dealloc:
# not all vector elements ready for deallocation
return
if len(i.duplicates) > 1:
for x in i.duplicates:
to_check.add(x)
else:
if base not in self.dealloc:
return
for x in itertools.chain(dup.duplicates, base.duplicates):
to_check.add(x)
if reg not in self.program.base_addresses \
and not isinstance(inst, call_arg):
free.free(base)
if inst.is_vec() and base.vector:
self.defined[base] = inst
for i in base.vector:
self.defined[i] = inst
else:
self.defined[reg] = inst
def process(self, program, alloc_pool):
self.update_usage(alloc_pool)
for k,i in enumerate(reversed(program)):
unused_regs = []
for j in i.get_def():
if j.vectorbase in self.alloc:
if j in self.defined:
raise CompilerError("Double write on register %s " \
"assigned by '%s' in %s" % \
(j,i,format_trace(i.caller)))
else:
# unused register
self.alloc_reg(j, alloc_pool)
unused_regs.append(j)
if unused_regs and len(unused_regs) == len(list(i.get_def())) and \
self.program.verbose:
# only report if all assigned registers are unused
self.unused[type(i).__name__] += 1
if self.program.verbose > 1:
print(
"Register(s) %s never used, assigned by '%s' in %s" % \
(unused_regs,i,format_trace(i.caller)))
for j in i.get_used():
self.alloc_reg(j, alloc_pool)
for j in i.get_def():
self.dealloc_reg(j, i, alloc_pool)
if k % 1000000 == 0 and k > 0:
print("Allocated registers for %d instructions at" % k, time.asctime())
self.update_max_usage(alloc_pool)
alloc_pool.consolidate()
# print "Successfully allocated registers"
# print "modp usage: %d clear, %d secret" % \
# (self.usage[Compiler.program.RegType.ClearModp], self.usage[Compiler.program.RegType.SecretModp])
# print "GF2N usage: %d clear, %d secret" % \
# (self.usage[Compiler.program.RegType.ClearGF2N], self.usage[Compiler.program.RegType.SecretGF2N])
return self.max_usage
def update_max_usage(self, alloc_pool):
for t, r in alloc_pool.ranges.items():
self.max_usage[t] = max(self.max_usage[t], r[-1].limit)
def update_usage(self, alloc_pool):
if self.old_pool:
self.update_max_usage(self.old_pool)
if id(self.old_pool) != id(alloc_pool):
alloc_pool.new_ranges(self.max_usage)
self.old_pool = alloc_pool
def finalize(self, options):
for reg in self.alloc:
for x in reg.get_all():
if x not in self.dealloc and reg not in self.dealloc \
and len(x.duplicates) == x.dup_count:
print('Warning: read before write at register %s/%x' %
(x, id(x)))
print('\tregister trace: %s' % format_trace(x.caller,
'\t\t'))
if options.stop:
sys.exit(1)
if self.program.verbose:
def p(sizes):
total = defaultdict(lambda: 0)
for (t, size) in sorted(sizes):
n = sizes[t, size]
total[t] += size * n
print('%s:%d*%d' % (t, size, n), end=' ')
print()
print('Total:', dict(total))
sizes = defaultdict(lambda: 0)
for reg in self.alloc:
x = reg.reg_type, reg.size
print('Used registers: ', end='')
p(sizes)
print('Unused instructions:', dict(self.unused))
def determine_scope(block, options):
last_def = defaultdict_by_id(lambda: -1)
used_from_scope = set_by_id()
def read(reg, n):
for dup in reg.duplicates:
if last_def[dup] == -1:
dup.can_eliminate = False
used_from_scope.add(dup)
def write(reg, n):
if last_def[reg] != -1:
print('Warning: double write at register', reg)
print('\tline %d: %s' % (n, instr))
print('\ttrace: %s' % format_trace(instr.caller, '\t\t'))
if options.stop:
sys.exit(1)
last_def[reg] = n
for n,instr in enumerate(block.instructions):
outputs,inputs = instr.get_def(), instr.get_used()
for reg in inputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
read(i, n)
else:
read(reg, n)
for reg in outputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
write(i, n)
else:
write(reg, n)
block.used_from_scope = used_from_scope
class Merger:
def __init__(self, block, options, merge_classes):
self.block = block
self.instructions = block.instructions
self.options = options
if options.max_parallel_open:
self.max_parallel_open = int(options.max_parallel_open)
else:
self.max_parallel_open = float('inf')
self.counter = defaultdict(lambda: 0)
self.rounds = defaultdict(lambda: 0)
self.dependency_graph(merge_classes)
def do_merge(self, merges_iter):
""" Merge an iterable of nodes in G, returning the number of merged
instructions and the index of the merged instruction. """
# sort merges, necessary for inputb
merge = list(merges_iter)
merge.sort()
merges_iter = iter(merge)
instructions = self.instructions
mergecount = 0
try:
n = next(merges_iter)
except StopIteration:
return mergecount, None
for i in merges_iter:
instructions[n].merge(instructions[i])
instructions[i] = None
self.merge_nodes(n, i)
mergecount += 1
return mergecount, n
def longest_paths_merge(self):
""" Attempt to merge instructions of type instruction_type (which are given in
merge_nodes) using longest paths algorithm.
Returns the no. of rounds of communication required after merging (assuming 1 round/instruction).
Doesn't use networkx.
"""
G = self.G
instructions = self.instructions
merge_nodes = self.open_nodes
depths = self.depths
self.req_num = defaultdict(lambda: 0)
if not merge_nodes:
return 0
# merge opens at same depth
merges = defaultdict(list)
for node in merge_nodes:
merges[depths[node]].append(node)
# after merging, the first element in merges[i] remains for each depth i,
# all others are removed from instructions and G
last_nodes = [None, None]
for i in sorted(merges):
merge = merges[i]
t = type(self.instructions[merge[0]])
self.counter[t] += len(merge)
self.rounds[t] += 1
if len(merge) > 10000:
print('Merging %d %s in round %d/%d' % \
(len(merge), t.__name__, i, len(merges)))
self.do_merge(merge)
self.req_num[t.__name__, 'round'] += 1
preorder = None
if len(instructions) > 1000000:
print("Topological sort ...")
order = Compiler.graph.topological_sort(G, preorder)
instructions[:] = [instructions[i] for i in order if instructions[i] is not None]
if len(instructions) > 1000000:
print("Done at", time.asctime())
return len(merges)
def dependency_graph(self, merge_classes):
""" Create the program dependency graph. """
block = self.block
options = self.options
open_nodes = set()
self.open_nodes = open_nodes
colordict = defaultdict(lambda: 'gray', asm_open='red',\
ldi='lightblue', ldm='lightblue', stm='blue',\
mov='yellow', mulm='orange', mulc='orange',\
triple='green', square='green', bit='green',\
asm_input='lightgreen')
G = Compiler.graph.SparseDiGraph(len(block.instructions))
self.G = G
reg_nodes = {}
last_def = defaultdict_by_id(lambda: -1)
last_read = defaultdict_by_id(list)
last_mem_write = []
last_mem_read = []
last_mem_write_of = defaultdict(list)
last_mem_read_of = defaultdict(list)
last_print_str = None
last = defaultdict(lambda: defaultdict(lambda: None))
last_open = deque()
last_input = defaultdict(lambda: [None, None])
mem_scopes = defaultdict_by_id(lambda: MemScope())
depths = [0] * len(block.instructions)
self.depths = depths
parallel_open = defaultdict(lambda: 0)
next_available_depth = {}
self.sources = []
self.real_depths = [0] * len(block.instructions)
round_type = {}
shuffles = defaultdict_by_id(set)
class MemScope:
def __init__(self):
self.read = []
self.write = []
def add_edge(i, j):
if i in (-1, j):
return
G.add_edge(i, j)
for d in (self.depths, self.real_depths):
if d[j] < d[i]:
d[j] = d[i]
def read(reg, n):
for dup in reg.duplicates:
if last_def[dup] not in (-1, n):
add_edge(last_def[dup], n)
last_read[reg].append(n)
def write(reg, n):
for dup in reg.duplicates:
add_edge(last_def[dup], n)
for m in last_read[dup]:
add_edge(m, n)
last_def[reg] = n
def handle_mem_access(addr, reg_type, last_access_this_kind,
last_access_other_kind):
this = last_access_this_kind[str(addr),reg_type]
other = last_access_other_kind[str(addr),reg_type]
if this and other:
if this[-1] < other[0]:
del this[:]
this.append(n)
if id(last_access_this_kind) == id(last_mem_write_of):
insts = itertools.chain(other, this)
else:
insts = other
for inst in insts:
add_edge(inst, n)
def mem_access(n, instr, last_access_this_kind, last_access_other_kind):
addr = instr.args[1]
reg_type = instr.args[0].reg_type
budget = block.parent.program.budget
if isinstance(addr, int):
for i in range(min(instr.get_size(), budget)):
addr_i = addr + i
handle_mem_access(addr_i, reg_type, last_access_this_kind,
last_access_other_kind)
if block.warn_about_mem and \
not block.parent.warned_about_mem and \
(instr.get_size() > budget) and not instr._protect:
print('WARNING: Order of memory instructions ' \
'not preserved due to long vector, errors possible')
block.parent.warned_about_mem = True
else:
handle_mem_access(addr, reg_type, last_access_this_kind,
last_access_other_kind)
if block.warn_about_mem and \
not block.parent.warned_about_mem and \
not isinstance(instr, DirectMemoryInstruction) and \
not instr._protect:
print('WARNING: Order of memory instructions ' \
'not preserved, errors possible')
block.parent.warned_about_mem = True
def strict_mem_access(n, last_this_kind, last_other_kind):
if last_other_kind and last_this_kind and \
last_other_kind[-1] > last_this_kind[-1]:
last_this_kind[:] = []
last_this_kind.append(n)
if last_this_kind == last_mem_write:
insts = itertools.chain(last_other_kind, last_this_kind)
else:
insts = last_other_kind
for i in insts:
add_edge(i, n)
def keep_order(instr, n, t, arg_index=None):
if arg_index is None:
player = None
else:
player = instr.args[arg_index]
if last[t][player] is not None:
add_edge(last[t][player], n)
last[t][player] = n
def keep_merged_order(instr, n, t):
if last_input[t][0] is not None:
if instr.merge_id() != \
block.instructions[last_input[t][0]].merge_id():
add_edge(last_input[t][0], n)
last_input[t][1] = last_input[t][0]
elif last_input[t][1] is not None:
add_edge(last_input[t][1], n)
last_input[t][0] = n
def keep_text_order(inst, n):
if inst.get_players() is None:
# switch
for x in list(last_input.keys()):
if isinstance(x, int):
add_edge(last_input[x][0], n)
del last_input[x]
keep_merged_order(instr, n, None)
elif last_input[None][0] is not None:
keep_merged_order(instr, n, None)
else:
for player in inst.get_players():
keep_merged_order(instr, n, player)
for n,instr in enumerate(block.instructions):
outputs,inputs = instr.get_def(), instr.get_used()
G.add_node(n)
# if options.debug:
# col = colordict[instr.__class__.__name__]
# G.add_node(n, color=col, label=str(instr))
for reg in outputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
write(i, n)
else:
write(reg, n)
for reg in inputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
read(i, n)
else:
read(reg, n)
# will be merged
if isinstance(instr, TextInputInstruction):
keep_text_order(instr, n)
elif isinstance(instr, RawInputInstruction):
keep_merged_order(instr, n, RawInputInstruction)
elif isinstance(instr, matmulsm_class):
if options.preserve_mem_order:
strict_mem_access(n, last_mem_read, last_mem_write)
else:
if instr.indices_values is not None and instr.first_factor_base_addresses is not None and instr.second_factor_base_addresses is not None:
# Determine which values get accessed by the MATMULSM instruction and only add the according dependencies.
for matmul_idx in range(len(instr.first_factor_base_addresses)):
start_time = time.time()
first_base = instr.first_factor_base_addresses[matmul_idx]
second_base = instr.second_factor_base_addresses[matmul_idx]
first_factor_row_indices = instr.indices_values[4 * matmul_idx]
first_factor_column_indices = instr.indices_values[4 * matmul_idx + 1]
second_factor_row_indices = instr.indices_values[4 * matmul_idx + 2]
second_factor_column_indices = instr.indices_values[4 * matmul_idx + 3]
first_factor_row_length = instr.args[12 * matmul_idx + 10]
second_factor_row_length = instr.args[12 * matmul_idx + 11]
# Due to the potentially very large number of inputs on large matrices, adding dependencies to
# all inputs may take a long time. Therefore, we only partially build the dependencies on
# large matrices and output a warning.
# The threshold of 2_250_000 values per matrix is equivalent to multiplying two 1500x1500
# matrices. Experiments showed that multiplying two 1700x1700 matrices requires roughly 10 seconds on an i7-1370P,
# so this threshold should lead to acceptable compile times even on slower processors.
first_factor_total_number_of_values = instr.args[12 * matmul_idx + 3] * instr.args[12 * matmul_idx + 4]
second_factor_total_number_of_values = instr.args[12 * matmul_idx + 4] * instr.args[12 * matmul_idx + 5]
max_dependencies_per_matrix = \
self.block.parent.program.budget
if first_factor_total_number_of_values > max_dependencies_per_matrix or second_factor_total_number_of_values > max_dependencies_per_matrix:
if block.warn_about_mem and not block.parent.warned_about_mem:
print('WARNING: Order of memory instructions not preserved due to long vector, errors possible')
block.parent.warned_about_mem = True
# Add dependencies to the first factor.
# If the size of the matrix exceeds the max_dependencies_per_matrix, only a limited number
# of rows will be processed.
for i in range(min(instr.args[12 * matmul_idx + 3], max_dependencies_per_matrix // instr.args[12 * matmul_idx + 4] + 1)):
for k in range(instr.args[12 * matmul_idx + 4]):
first_factor_addr = first_base + \
first_factor_row_length * first_factor_row_indices[i] + \
first_factor_column_indices[k]
handle_mem_access(first_factor_addr, 's', last_mem_read_of, last_mem_write_of)
# Add dependencies to the second factor.
# If the size of the matrix exceeds the max_dependencies_per_matrix, only a limited number
# of rows will be processed.
for k in range(min(instr.args[12 * matmul_idx + 4], max_dependencies_per_matrix // instr.args[12 * matmul_idx + 5] + 1)):
if (time.time() - start_time) > 10:
# Abort building the dependencies if that takes too much time.
if block.warn_about_mem and not block.parent.warned_about_mem:
print('WARNING: Order of memory instructions not preserved due to long vector, errors possible')
block.parent.warned_about_mem = True
break
for j in range(instr.args[12 * matmul_idx + 5]):
second_factor_addr = second_base + \
second_factor_row_length * second_factor_row_indices[k] + \
second_factor_column_indices[j]
handle_mem_access(second_factor_addr, 's', last_mem_read_of, last_mem_write_of)
else:
# If the accessed values cannot be determined, be cautious I guess.
for i in last_mem_write_of.values():
for j in i:
add_edge(j, n)
if isinstance(instr, merge_classes):
open_nodes.add(n)
G.add_node(n, merges=[])
# the following must happen after adding the edge
self.real_depths[n] += 1
depth = depths[n] + 1
# find first depth that has the right type and isn't full
skipped_depths = set()
while (depth in round_type and \
round_type[depth] != instr.merge_id()) or \
(int(options.max_parallel_open) > 0 and \
parallel_open[depth] >= int(options.max_parallel_open)):
skipped_depths.add(depth)
depth = next_available_depth.get((type(instr), depth), \
depth + 1)
for d in skipped_depths:
next_available_depth[type(instr), d] = depth
round_type[depth] = instr.merge_id()
if int(options.max_parallel_open) > 0:
parallel_open[depth] += len(instr.args) * instr.get_size()
depths[n] = depth
if isinstance(instr, ReadMemoryInstruction):
if options.preserve_mem_order:
strict_mem_access(n, last_mem_read, last_mem_write)
elif instr._protect:
scope = mem_scopes[instr._protect]
strict_mem_access(n, scope.read, scope.write)
if not options.preserve_mem_order:
mem_access(n, instr, last_mem_read_of, last_mem_write_of)
elif isinstance(instr, WriteMemoryInstruction):
if options.preserve_mem_order:
strict_mem_access(n, last_mem_write, last_mem_read)
elif instr._protect:
scope = mem_scopes[instr._protect]
strict_mem_access(n, scope.write, scope.read)
if not options.preserve_mem_order:
mem_access(n, instr, last_mem_write_of, last_mem_read_of)
# keep I/O instructions in order
elif isinstance(instr, IOInstruction):
if last_print_str is not None:
add_edge(last_print_str, n)
last_print_str = n
elif isinstance(instr, PublicFileIOInstruction):
keep_order(instr, n, PublicFileIOInstruction)
elif isinstance(instr, prep_class):
keep_order(instr, n, instr.args[0])
elif isinstance(instr, StackInstruction):
keep_order(instr, n, StackInstruction)
elif isinstance(instr, applyshuffle):
for handle in instr.handles():
shuffles[handle].add(n)
elif isinstance(instr, delshuffle):
for i_inst in shuffles[instr.args[0]]:
add_edge(i_inst, n)
if not G.pred[n]:
self.sources.append(n)
if n % 1000000 == 0 and n > 0:
print("Processed dependency of %d/%d instructions at" % \
(n, len(block.instructions)), time.asctime())
def merge_nodes(self, i, j):
""" Merge node j into i, removing node j """
G = self.G
if j in G[i]:
G.remove_edge(i, j)
if i in G[j]:
G.remove_edge(j, i)
G.add_edges_from(list(zip(itertools.cycle([i]), G[j], [G.weights[(j,k)] for k in G[j]])))
G.add_edges_from(list(zip(G.pred[j], itertools.cycle([i]), [G.weights[(k,j)] for k in G.pred[j]])))
G.get_attr(i, 'merges').append(j)
G.remove_node(j)
def eliminate_dead_code(self, only_ldint=False):
instructions = self.instructions
G = self.G
merge_nodes = self.open_nodes
count = 0
open_count = 0
stats = defaultdict(lambda: 0)
for i,inst in zip(range(len(instructions) - 1, -1, -1), reversed(instructions)):
if inst is None:
continue
if only_ldint and not isinstance(inst, ldint_class):
continue
can_eliminate_defs = True
for reg in inst.get_def():
for dup in reg.duplicates:
if not (dup.can_eliminate and reduce(
operator.and_,
(x.can_eliminate for x in dup.vector), True)):
can_eliminate_defs = False
break
# remove if instruction has result that isn't used
unused_result = not G.degree(i) and len(list(inst.get_def())) \
and can_eliminate_defs \
and not isinstance(inst, (DoNotEliminateInstruction))
def eliminate(i):
G.remove_node(i)
merge_nodes.discard(i)
stats[type(instructions[i]).__name__] += 1
for reg in instructions[i].get_def():
self.block.parent.program.base_addresses.pop(reg)
instructions[i] = None
if unused_result:
eliminate(i)
count += 1
if count > 0 and self.block.parent.program.verbose:
print('Eliminated %d dead instructions, among which %d opens: %s' \
% (count, open_count, dict(stats)))
def print_graph(self, filename):
f = open(filename, 'w')
print('digraph G {', file=f)
for i in range(self.G.n):
for j in self.G[i]:
print('"%d: %s" -> "%d: %s";' % \
(i, self.instructions[i], j, self.instructions[j]), file=f)
print('}', file=f)
f.close()
def print_depth(self, filename):
f = open(filename, 'w')
for i in range(self.G.n):
print('%d: %s' % (self.depths[i], self.instructions[i]), file=f)
f.close()
class RegintOptimizer:
def __init__(self):
self.cache = util.dict_by_id()
self.offset_cache = util.dict_by_id()
self.rev_offset_cache = {}
self.range_cache = util.dict_by_id()
def add_offset(self, res, new_base, new_offset, multiplier):
self.offset_cache[res] = new_base, new_offset, multiplier
if (new_base.i, new_offset, multiplier) not in self.rev_offset_cache:
self.rev_offset_cache[new_base.i, new_offset, multiplier] = res
def run(self, instructions, program):
changed = defaultdict(int)
for i, inst in enumerate(instructions):
pre = inst
if isinstance(inst, ldint_class):
self.cache[inst.args[0]] = inst.args[1]
elif isinstance(inst, incint):
if inst.args[2] == 1 and inst.args[3] == 1 and \
inst.args[4] == len(inst.args[0]) and \
inst.args[1] in self.cache:
self.range_cache[inst.args[0]] = \
len(inst.args[0]), self.cache[inst.args[1]]
elif isinstance(inst, IntegerInstruction):
if inst.args[1] in self.cache and inst.args[2] in self.cache:
res = inst.op(self.cache[inst.args[1]],
self.cache[inst.args[2]])
if abs(res) < 2 ** 31:
self.cache[inst.args[0]] = res
instructions[i] = ldint(inst.args[0], res,
add_to_prog=False)
elif isinstance(inst, addint_class):
def f(base, delta_reg):
delta = self.cache[delta_reg]
if base in self.offset_cache:
reg, offset, mult = self.offset_cache[base]
new_base, new_offset = reg, offset + delta
else:
new_base, new_offset = base, delta
mult = 1
self.add_offset(inst.args[0], new_base, new_offset,
mult)
if inst.args[1] in self.cache:
f(inst.args[2], inst.args[1])
elif inst.args[2] in self.cache:
f(inst.args[1], inst.args[2])
elif isinstance(inst, subint_class):
def f(reg, cached, reverse):
delta = self.cache[cached]
if reg in self.offset_cache:
reg, offset, mult = self.offset_cache[reg]
new_base = reg
if reverse:
new_offset = offset - delta
mult *= -1
else:
new_offset = offset + delta
else:
new_base = reg
new_offset = delta if reverse else -delta
mult = 1
self.add_offset(inst.args[0], new_base, new_offset,
-mult)
if inst.args[1] in self.cache:
f(inst.args[2], inst.args[1], False)
elif inst.args[2] in self.cache:
f(inst.args[1], inst.args[2], True)
elif isinstance(inst, IndirectMemoryInstruction):
if inst.args[1] in self.cache:
instructions[i] = inst.get_direct(self.cache[inst.args[1]])
instructions[i]._protect = inst._protect
elif inst.args[1] in self.offset_cache:
base, offset, mult = self.offset_cache[inst.args[1]]
addr = self.rev_offset_cache[base.i, offset, mult]
inst.args[1] = addr
elif inst.args[1] in self.range_cache:
size, base = self.range_cache[inst.args[1]]
if size == len(inst.args[0]):
instructions[i] = inst.get_direct(base)
elif type(inst) == convint_class:
if inst.args[1] in self.cache:
res = self.cache[inst.args[1]]
self.cache[inst.args[0]] = res
if abs(res) < 2 ** 31:
instructions[i] = ldi(inst.args[0], res,
add_to_prog=False)
elif isinstance(inst, mulm_class):
if inst.args[2] in self.cache:
op = self.cache[inst.args[2]]
if op == 0:
instructions[i] = ldsi(inst.args[0], 0,
add_to_prog=False)
elif isinstance(inst, (crash, cond_print_str, cond_print_plain)):
if inst.args[0] in self.cache:
cond = self.cache[inst.args[0]]
if not cond:
instructions[i] = None
if pre != instructions[i]:
changed[type(inst).__name__] += 1
pre = len(instructions)
instructions[:] = list(filter(lambda x: x is not None, instructions))
post = len(instructions)
if changed and program.options.verbose:
print('regint optimizer changed:', dict(changed))
if pre != post and program.options.verbose:
print('regint optimizer removed %d instructions' % (pre - post))