mirror of
https://github.com/data61/MP-SPDZ.git
synced 2026-01-09 13:37:58 -05:00
141 lines
3.0 KiB
C++
141 lines
3.0 KiB
C++
/*
|
|
* bigint.hpp
|
|
*
|
|
*/
|
|
|
|
#ifndef MATH_BIGINT_HPP_
|
|
#define MATH_BIGINT_HPP_
|
|
|
|
#include "bigint.h"
|
|
#include "Integer.h"
|
|
#include "Processor/BaseMachine.h"
|
|
|
|
template<int X, int L>
|
|
bigint& bigint::from_signed(const gfp_<X, L>& other)
|
|
{
|
|
to_signed_bigint(*this, other);
|
|
return *this;
|
|
}
|
|
|
|
template<class T>
|
|
bigint& bigint::from_signed(const T& other)
|
|
{
|
|
*this = other;
|
|
return *this;
|
|
}
|
|
|
|
template<class T>
|
|
mpf_class bigint::get_float(T v, T p, T z, T s)
|
|
{
|
|
// GMP can't handle more precision in exponent
|
|
Integer exp = Integer(p, 31).get();
|
|
bigint tmp;
|
|
tmp.from_signed(v);
|
|
if (abs(tmp) == 1)
|
|
BaseMachine::s().mini_warning = min(BaseMachine::s().mini_warning,
|
|
int(exp.get()));
|
|
mpf_class res = tmp;
|
|
if (exp > 0)
|
|
mpf_mul_2exp(res.get_mpf_t(), res.get_mpf_t(), exp.get());
|
|
else
|
|
mpf_div_2exp(res.get_mpf_t(), res.get_mpf_t(), -exp.get());
|
|
if (z.is_one())
|
|
res = 0;
|
|
if (s.is_one())
|
|
{
|
|
res *= -1;
|
|
}
|
|
if (not z.is_bit() or not s.is_bit())
|
|
{
|
|
cerr << "z=" << z << " s=" << s << endl;
|
|
throw Processor_Error("invalid floating point number");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<class U, class T>
|
|
void bigint::output_float(U& o, const mpf_class& x, T nan)
|
|
{
|
|
if (nan.is_zero())
|
|
o << x;
|
|
else
|
|
{
|
|
o << "NaN";
|
|
BaseMachine::s().nan_warning = true;
|
|
}
|
|
}
|
|
|
|
|
|
class gmp_random
|
|
{
|
|
public:
|
|
gmp_randclass Gen;
|
|
gmp_random() : Gen(gmp_randinit_default)
|
|
{
|
|
Gen.seed(0);
|
|
}
|
|
};
|
|
|
|
template<class T>
|
|
bigint sqrRootMod(const T& aa)
|
|
{
|
|
bigint a = aa;
|
|
bigint p = T::pr();
|
|
|
|
bigint ans;
|
|
if (a == 0)
|
|
{
|
|
ans = 0;
|
|
return ans;
|
|
}
|
|
if (mpz_legendre(a.get_mpz_t(), p.get_mpz_t()) != 1)
|
|
throw runtime_error("cannot compute square root of non-square");
|
|
if (mpz_tstbit(p.get_mpz_t(), 1) == 1)
|
|
{
|
|
// First do case with p=3 mod 4
|
|
bigint exp = (p + 1) / 4;
|
|
mpz_powm(ans.get_mpz_t(), a.get_mpz_t(), exp.get_mpz_t(),
|
|
p.get_mpz_t());
|
|
}
|
|
else
|
|
{
|
|
// Shanks algorithm
|
|
bigint n, q, yy, xx, temp;
|
|
int r;
|
|
T::get_ZpD().get_shanks_parameters(yy, temp, r);
|
|
mpz_powm(xx.get_mpz_t(), a.get_mpz_t(), temp.get_mpz_t(), p.get_mpz_t());
|
|
// b=a*x^2 mod p, x=a*x mod p
|
|
T x = xx;
|
|
T b = (aa * x * x);
|
|
x = (aa * x);
|
|
T y = yy;
|
|
// While b!=1 do
|
|
while (b != 1)
|
|
{
|
|
// Find smallest m such that b^(2^m)=1 mod p
|
|
int m = 1;
|
|
T temp = (b * b);
|
|
while (temp != 1)
|
|
{
|
|
temp = (temp * temp);
|
|
m++;
|
|
}
|
|
// t=y^(2^(r-m-1)) mod p, y=t^2, r=m
|
|
T t = y;
|
|
for (int i = 0; i < r - m - 1; i++)
|
|
{
|
|
t = (t * t);
|
|
}
|
|
y = (t * t);
|
|
r = m;
|
|
// x=x*t mod p, b=b*y mod p
|
|
x = (x * t);
|
|
b = (b * y);
|
|
}
|
|
ans = x;
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
#endif /* MATH_BIGINT_HPP_ */
|