add Visual SWE-bench benchmark (#7131)

Co-authored-by: tsukimi <yuailun@pku.edu.cn>
Co-authored-by: Ryan H. Tran <descience.thh10@gmail.com>
This commit is contained in:
luolin101
2025-05-19 13:08:46 +08:00
committed by GitHub
parent 2ecc39ffcc
commit 1a3cb16ba6
10 changed files with 1366 additions and 2 deletions

View File

@@ -0,0 +1,172 @@
# Visual SWE-Bench Evaluation with Docker Image
This folder contains the evaluation harness that we built on top of the original [Visual SWE-Bench benchmark](https://multi-swe-bench.github.io/#/) ([paper](https://arxiv.org/abs/2412.17315)).
The evaluation consists of three steps:
1. Environment setup: [install python environment](../../README.md#development-environment), [configure LLM config](../../README.md#configure-openhands-and-your-llm), and [pull docker](#openhands-visual-swe-bench-instance-level-docker-support).
2. [Run inference](#run-inference-on-visual-swe-bench-instances): Generate a edit patch for each Github issue.
3. [Evaluate patches using Visual SWE-Bench docker](#evaluate-generated-patches).
## Setup Environment and LLM Configuration
Please follow instruction [here](../../README.md#setup) to setup your local development environment and LLM.
## OpenHands Visual SWE-Bench Instance-level Docker Support
OpenHands now support using the official evaluation docker for both **[inference](#run-inference-on-visual-swe-bench-instances) and [evaluation](#evaluate-generated-patches)**.
This is now the default behavior.
## Run Inference on Visual SWE-Bench Instances
Make sure your Docker daemon is running, and you have ample disk space for the [instance-level docker image](#openhands-visual-swe-bench-instance-level-docker-support).
When the `run_infer.sh` script is started, it will automatically pull the relevant Visual SWE-Bench images. For example, for instance ID `networkx__networkx-6503`, it will try to pull our pre-build docker image `sweb.eval.x86_64.networkx_s_networkx-6503` from DockerHub. This image will be used create an OpenHands runtime image where the agent will operate on.
```bash
./evaluation/benchmarks/visual_swe_bench/scripts/run_infer.sh [model_config] [git-version] [agent] [eval_limit] [max_iter] [num_workers]
# Example
./evaluation/benchmarks/visual_swe_bench/scripts/run_infer.sh llm.eval_gpt4_1106_preview HEAD CodeActAgent 133 30 1
```
where `model_config` is mandatory, and the rest are optional.
- `model_config`, e.g. `eval_gpt4_1106_preview`, is the config group name for your
LLM settings, as defined in your `config.toml`.
- `git-version`, e.g. `HEAD`, is the git commit hash of the OpenHands version you would
like to evaluate. It could also be a release tag like `0.6.2`.
- `agent`, e.g. `CodeActAgent`, is the name of the agent for benchmarks, defaulting
to `CodeActAgent`.
- `eval_limit`, e.g. `10`, limits the evaluation to the first `eval_limit` instances. By
default, the script evaluates the entire Visual SWE-bench set (133 issues). Note:
in order to use `eval_limit`, you must also set `agent`.
- `max_iter`, e.g. `20`, is the maximum number of iterations for the agent to run. By
default, it is set to 30.
- `num_workers`, e.g. `3`, is the number of parallel workers to run the evaluation. By
default, it is set to 1.
There are also two optional environment variables you can set.
```bash
export USE_HINT_TEXT=true # if you want to use hint text in the evaluation. Default to false. Ignore this if you are not sure.
export USE_INSTANCE_IMAGE=true # if you want to use instance-level docker images. Default to true
```
Let's say you'd like to run 10 instances using `llm.eval_gpt4_1106_preview` and CodeActAgent,
then your command would be:
```bash
./evaluation/benchmarks/visual_swe_bench/scripts/run_infer.sh llm.eval_gpt4_1106_preview HEAD CodeActAgent 10
```
### Specify a subset of tasks to run infer
If you would like to specify a list of tasks you'd like to benchmark on, you could
create a `config.toml` under `./evaluation/benchmarks/visual_swe_bench/` folder, and put a list
attribute named `selected_ids`, e.g.
```toml
selected_ids = ['astropy__astropy-13838', 'matplotlib__matplotlib-21617', 'plotly__plotly.py-1966']
```
Then only these tasks (rows whose `instance_id` is in the above list) will be evaluated.
In this case, `eval_limit` option applies to tasks that are in the `selected_ids` list.
After running the inference, you will obtain a `output.jsonl` (by default it will be saved to `evaluation/evaluation_outputs`).
## Evaluate Generated Patches
### Download Docker Images
**(Recommended for reproducibility)** If you have extra local space (e.g., 200GB), you can try pull the instance-level docker images we've prepared by running:
```bash
evaluation/benchmarks/visual_swe_bench/scripts/docker/pull_all_eval_docker.sh instance
```
If you want to save disk space a bit, while speeding up the image pre-build process, you can pull the environment-level docker images:
```bash
evaluation/benchmarks/visual_swe_bench/scripts/docker/pull_all_eval_docker.sh env
```
If you want to evaluate on the full SWE-Bench test set:
```bash
evaluation/benchmarks/visual_swe_bench/scripts/docker/pull_all_eval_docker.sh instance full
```
### Run evaluation
With `output.jsonl` file, you can run `eval_infer.sh` to evaluate generated patches, and produce a fine-grained report.
**This evaluation is performed using the official dockerized evaluation announced.**
> If you want to evaluate existing results, you should first run this to clone existing outputs
>
>```bash
>git clone https://huggingface.co/spaces/OpenHands/evaluation evaluation/evaluation_outputs
>```
NOTE, you should have already pulled the instance-level OR env-level docker images following [this section](#openhands-visual-swe-bench-instance-level-docker-support).
Then you can run the following:
```bash
./evaluation/benchmarks/visual_swe_bench/scripts/eval_infer.sh $YOUR_OUTPUT_JSONL [instance_id]
# Example
./evaluation/benchmarks/visual_swe_bench/scripts/eval_infer.sh evaluation/evaluation_outputs/outputs/luolin101__Visual-SWE-bench-test/CodeActAgent/gpt-4-1106-preview_maxiter_50_N_v1.0/output.jsonl
```
The script now accepts optional arguments:
- `instance_id`: Specify a single instance to evaluate (optional)
For example, to evaluate a specific instance with a custom dataset and split:
```bash
./evaluation/benchmarks/visual_swe_bench/scripts/eval_infer.sh $YOUR_OUTPUT_JSONL instance_123
```
> You can also pass in a JSONL with SWE-Bench format to `./evaluation/benchmarks/visual_swe_bench/scripts/eval_infer.sh`, where each line is a JSON of `{"model_patch": "XXX", "model_name_or_path": "YYY", "instance_id": "ZZZ"}`.
The final results will be saved to `evaluation/evaluation_outputs/outputs/visual_swe_bench/CodeActAgent/gpt-4-1106-preview_maxiter_50_N_v1.0/` with the following files/directory:
- `README.md`: a report showing what are the instances that passed, failed, etc.
- `report.json`: a JSON file that contains keys like `"resolved_ids"` pointing to instance IDs that are resolved by the agent.
- `logs/`: a directory of test logs
## Visualize Results
First you need to clone `https://huggingface.co/spaces/OpenHands/evaluation` and add your own running results from openhands into the `outputs` of the cloned repo.
```bash
git clone https://huggingface.co/spaces/OpenHands/evaluation
```
**(optional) setup streamlit environment with conda**:
```bash
cd evaluation
conda create -n streamlit python=3.10
conda activate streamlit
pip install -r requirements.txt
```
**run the visualizer**:
Then, in a separate Python environment with `streamlit` library, you can run the following:
```bash
# Make sure you are inside the cloned `evaluation` repo
conda activate streamlit # if you follow the optional conda env setup above
streamlit app.py --server.port 8501 --server.address 0.0.0.0
```
Then you can access the SWE-Bench trajectory visualizer at `localhost:8501`.
## Submit your evaluation results
You can start your own fork of [our huggingface evaluation outputs](https://huggingface.co/spaces/OpenHands/evaluation) and submit a PR of your evaluation results following the guide [here](https://huggingface.co/docs/hub/en/repositories-pull-requests-discussions#pull-requests-and-discussions).

View File

@@ -0,0 +1,641 @@
import asyncio
import json
import os
import tempfile
from typing import Any
import pandas as pd
import toml
from datasets import load_dataset
import openhands.agenthub
from evaluation.benchmarks.swe_bench.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
codeact_user_response,
get_default_sandbox_config_for_eval,
get_metrics,
is_fatal_evaluation_error,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
AppConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo}__{instance.version}'.replace('/', '__')
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
# Instruction based on Anthropic's official trajectory
# https://github.com/eschluntz/swe-bench-experiments/tree/main/evaluation/verified/20241022_tools_claude-3-5-sonnet-updated/trajs
instruction = (
'<uploaded_files>\n'
f'/workspace/{workspace_dir_name}\n'
'</uploaded_files>\n'
f"I've uploaded a python code repository in the directory {workspace_dir_name}. Consider the following issue description:\n\n"
f'<issue_description>\n'
f'{instance.problem_statement}\n'
'</issue_description>\n\n'
'Can you help me implement the necessary changes to the repository so that the requirements specified in the <issue_description> are met?\n'
"I've already taken care of all changes to any of the test files described in the <issue_description>. This means you DON'T have to modify the testing logic or any of the tests in any way!\n"
"Also the development Python environment is already set up for you (i.e., all dependencies already installed), so you don't need to install other packages.\n"
'Your task is to make the minimal changes to non-test files in the /workspace directory to ensure the <issue_description> is satisfied.\n'
'Follow these steps to resolve the issue:\n'
'1. As a first step, it might be a good idea to explore the repo to familiarize yourself with its structure.\n'
'2. Create a script to reproduce the error and execute it with `python <filename.py>` using the BashTool, to confirm the error\n'
'3. Edit the sourcecode of the repo to resolve the issue\n'
'4. Rerun your reproduce script and confirm that the error is fixed!\n'
'5. Think about edgecases, add comprehensive tests for them in your reproduce script, and run them to make sure your fix handles them as well\n'
f'6. Once you are done with the initial implementation, please carefully re-read the problem description and check the difference between the current code and the base commit {instance["base_commit"]}. Do you think that the issue has been completely and comprehensively solved? Write tests to check the correctness of the solution, specifically focusing on tests that may point out any remaining problems that are not yet solved. Run all of the tests in the repo and check if any of them fail, and if they do fix the code. Repeat this process of carefully reading the problem description and current implementation, testing, and fixing any problems until you are confident that the current implementation is correct. Find and run any tests in the repo that are related to:\n'
' - The issue you are fixing\n'
' - The files you modified\n'
' - The functions you changed\n'
' Make sure all these tests pass with your changes.\n'
"Your thinking should be thorough and so it's fine if it's very long.\n"
)
if RUN_WITH_BROWSING:
instruction += (
'<IMPORTANT!>\nYou SHOULD NEVER attempt to browse the web. </IMPORTANT!>\n'
)
return instruction
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def get_instance_docker_image(instance_id: str, official_image: bool = False) -> str:
image_name = 'sweb.eval.x86_64.' + instance_id
image_name = image_name.replace(
'__', '_s_'
) # to comply with docker image naming convention
other_list = [
'plotly__plotly.py-4083',
'plotly__plotly.py-2600',
'plotly__plotly.py-2591',
'plotly__plotly.py-1966',
'networkx__networkx-6503',
'networkx__networkx-6098',
'networkx__networkx-5616',
'networkx__networkx-5354',
'networkx__networkx-5058',
'networkx__networkx-4378',
'networkx__networkx-3764',
'vega__altair-2785',
'vega__altair-1092',
'vega__altair-974',
'vega__altair-830',
'matplotlib__matplotlib-27754',
'matplotlib__matplotlib-26926',
'matplotlib__matplotlib-26788',
'matplotlib__matplotlib-26586',
'sympy__sympy-26941',
'mwaskom__seaborn-3458',
'mwaskom__seaborn-3454',
]
if instance_id in other_list:
return ('docker.io/luolin101/'.rstrip('/') + '/' + image_name).lower()
return (DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + image_name).lower()
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> AppConfig:
# We use a different instance image for the each instance of swe-bench eval
use_official_image = bool(
'verified' in metadata.dataset.lower() or 'lite' in metadata.dataset.lower()
)
base_container_image = get_instance_docker_image(
instance['instance_id'], use_official_image
)
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = base_container_image
sandbox_config.enable_auto_lint = True
sandbox_config.use_host_network = False
# Add platform to the sandbox config to solve issue 4401
sandbox_config.platform = 'linux/amd64'
sandbox_config.remote_runtime_resource_factor = get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
)
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=sandbox_config,
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
)
)
agent_config = AgentConfig(
enable_jupyter=False,
enable_browsing=RUN_WITH_BROWSING,
enable_llm_editor=False,
condenser=metadata.condenser_config,
enable_prompt_extensions=False,
)
config.set_agent_config(agent_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}'
)
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
)
swe_instance_json_name = 'swe-bench-instance.json'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
json.dump([instance.to_dict()], f)
else:
json.dump([instance], f)
# Copy the file to the desired location
runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
# inject the instance swe entry
runtime.copy_to(
str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, ErrorObservation):
logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git reset --hard')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')
action = CmdRunAction(command='which python')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0 and 'testbed' in obs.content,
f'Expected to find python interpreter from testbed, but got: {str(obs)}',
)
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to kill it...')
action = CmdRunAction(command='C-c')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git config --global core.pager ""')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git config --global core.pager "": {str(obs)}',
)
# First check for any git repositories in subdirectories
action = CmdRunAction(command='find . -type d -name .git -not -path "./.git"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to find git repositories: {str(obs)}',
)
git_dirs = [p for p in obs.content.strip().split('\n') if p]
if git_dirs:
# Remove all .git directories in subdirectories
for git_dir in git_dirs:
action = CmdRunAction(command=f'rm -rf "{git_dir}"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove git directory {git_dir}: {str(obs)}',
)
# add all files
action = CmdRunAction(command='git add -A')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git add -A: {str(obs)}',
)
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f'git diff --no-color --cached {instance["base_commit"]}'
)
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
git_patch = obs.content.strip()
break
else:
logger.info('Failed to get git diff, retrying...')
sleep_if_should_continue(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
sleep_if_should_continue(10)
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {'git_patch': git_patch}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
runtime_failure_count: int = 0,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance)
instruction = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if is_fatal_evaluation_error(state.last_error):
raise EvalException('Fatal error detected: ' + state.last_error)
# ======= THIS IS SWE-Bench specific =======
# Get git patch
return_val = complete_runtime(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'git_patch': git_patch,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
histories = [event_to_dict(event) for event in state.history]
metrics = get_metrics(state)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
skip_ids = os.environ.get('SKIP_IDS', '').split(',')
if len(skip_ids) > 0:
logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...')
return dataset[~dataset[filter_column].isin(skip_ids)]
return dataset
# A list of instances that are known to be tricky to infer
# (will cause runtime failure even with resource factor = 8)
SWEGYM_EXCLUDE_IDS = [
'dask__dask-10422',
'pandas-dev__pandas-50548',
'pandas-dev__pandas-53672',
'pandas-dev__pandas-54174',
'pandas-dev__pandas-55518',
'pandas-dev__pandas-58383',
'pydata__xarray-6721',
'pytest-dev__pytest-10081',
'pytest-dev__pytest-7236',
]
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='princeton-nlp/SWE-bench',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, split=args.split)
swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
)
if 'SWE-Gym' in args.dataset:
swe_bench_tests = swe_bench_tests[
~swe_bench_tests['instance_id'].isin(SWEGYM_EXCLUDE_IDS)
]
logger.info(
f'{len(swe_bench_tests)} tasks left after excluding SWE-Gym excluded tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
details = {}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8 * 60 * 60, # 8 hour PER instance should be more than enough
max_retries=5,
)

View File

@@ -0,0 +1,157 @@
xingyaoww/sweb.eval.x86_64.astropy_s_astropy-11693:latest
xingyaoww/sweb.eval.x86_64.astropy_s_astropy-13838:latest
xingyaoww/sweb.eval.x86_64.astropy_s_astropy-14295:latest
xingyaoww/sweb.eval.x86_64.astropy_s_astropy-8292:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-13908:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-13980:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-13983:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-13984:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-14043:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-14623:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-19763:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-20470:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-20518:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-20584:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-20761:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-20826:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-21443:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-21490:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-21550:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-21568:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-21617:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-22865:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-22871:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-22931:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-23047:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-23111:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-23412:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24088:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24177:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24189:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24570:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24691:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24749:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24768:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24849:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24870:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-24971:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25287:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25334:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25340:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25346:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25405:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25499:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25565:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25640:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25667:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25779:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-26078:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-26466:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-2576:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-2846:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-2979:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3180:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3187:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3202:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3216:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3217:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3276:latest
xingyaoww/sweb.eval.x86_64.mwaskom_s_seaborn-3394:latest
xingyaoww/sweb.eval.x86_64.pydata_s_xarray-4182:latest
xingyaoww/sweb.eval.x86_64.pydata_s_xarray-5682:latest
xingyaoww/sweb.eval.x86_64.pylint-dev_s_pylint-4551:latest
xingyaoww/sweb.eval.x86_64.scikit-learn_s_scikit-learn-13087:latest
xingyaoww/sweb.eval.x86_64.scikit-learn_s_scikit-learn-13618:latest
xingyaoww/sweb.eval.x86_64.scikit-learn_s_scikit-learn-14067:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-10048:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-10097:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-10191:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-10435:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-11266:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-11502:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-7615:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-7757:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8028:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8056:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8075:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8120:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8265:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8278:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8620:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8621:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8638:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-8658:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9229:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9230:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9289:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9320:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9350:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9464:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9673:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9698:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9797:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9982:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9987:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9997:latest
xingyaoww/sweb.eval.x86_64.sphinx-doc_s_sphinx-9999:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-11787:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-11788:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-13264:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-13840:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-15151:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-15304:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-15625:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-15976:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-16003:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-17067:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-17115:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-18922:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-21769:latest
xingyaoww/sweb.eval.x86_64.sympy_s_sympy-24723:latest
luolin101/sweb.eval.x86_64.plotly_s_plotly.py-4083:latest
luolin101/sweb.eval.x86_64.plotly_s_plotly.py-2600:latest
luolin101/sweb.eval.x86_64.plotly_s_plotly.py-2591:latest
luolin101/sweb.eval.x86_64.plotly_s_plotly.py-1966:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-6503:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-6098:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-5616:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-5354:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-5058:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-4378:latest
luolin101/sweb.eval.x86_64.networkx_s_networkx-3764:latest
luolin101/sweb.eval.x86_64.vega_s_altair-2785:latest
luolin101/sweb.eval.x86_64.vega_s_altair-1092:latest
luolin101/sweb.eval.x86_64.vega_s_altair-974:latest
luolin101/sweb.eval.x86_64.vega_s_altair-830:latest
luolin101/sweb.eval.x86_64.matplotlib_s_matplotlib-27754:latest
luolin101/sweb.eval.x86_64.matplotlib_s_matplotlib-26926:latest
luolin101/sweb.eval.x86_64.matplotlib_s_matplotlib-26788:latest
luolin101/sweb.eval.x86_64.matplotlib_s_matplotlib-26586:latest
luolin101/sweb.eval.x86_64.sympy_s_sympy-26941:latest
luolin101/sweb.eval.x86_64.mwaskom_s_seaborn-3458:latest
luolin101/sweb.eval.x86_64.mwaskom_s_seaborn-3454:latest
xingyaoww/sweb.eval.x86_64.matplotlib_s_matplotlib-25631:latest
xingyaoww/sweb.env.x86_64.428468730904ff6b4232aa:latest
xingyaoww/sweb.env.x86_64.89a9e6df7ab7bcb9e010c8:latest
xingyaoww/sweb.env.x86_64.15374367de368534f261e3:latest
xingyaoww/sweb.env.x86_64.6b007979cf533f0f3016e8:latest
xingyaoww/sweb.env.x86_64.b382c45e0a94d34ef0fc86:latest
xingyaoww/sweb.env.x86_64.7037e8c448a4b8ebfe9b13:latest
xingyaoww/sweb.env.x86_64.31244378a92e3bcce809ac:latest
xingyaoww/sweb.env.x86_64.efa6065ed5bf204410fd53:latest
xingyaoww/sweb.env.x86_64.a0efca7a0fe6719dbf65c2:latest
xingyaoww/sweb.env.x86_64.502d8fc6ebccd881244091:latest
luolin101/sweb.env.x86_64.eb002359cfcbe2edb56088:latest
xingyaoww/sweb.env.x86_64.d905bb51fb68acc5d4221b:latest
xingyaoww/sweb.env.x86_64.aa92880033da20ca313928:latest
luolin101/sweb.env.x86_64.c6d251a05e0af7688b64fd:latest
xingyaoww/sweb.env.x86_64.c795f4b88616b8462021ed:latest
luolin101/sweb.env.x86_64.1e5a06e76ee016d067d77e:latest
luolin101/sweb.env.x86_64.2e03d8e4d4bd373937a9ef:latest
luolin101/sweb.env.x86_64.4c16026920d27ea78f3b7a:latest
luolin101/sweb.env.x86_64.d15120dfdbda9831e9646b:latest
luolin101/sweb.env.x86_64.c581ba273c3275679773dd:latest
luolin101/sweb.env.x86_64.dc800a1bbe275c5de0c4aa:latest
luolin101/sweb.env.x86_64.59bd7d84a0939c7caba7e6:latest
xingyaoww/sweb.env.x86_64.0d80c7dec81ee2f2f513e2:latest
xingyaoww/sweb.base.x86_64:latest

View File

@@ -0,0 +1,62 @@
#!/bin/bash
set -e
LEVEL=$1
# three levels:
# - base, keyword "sweb.base"
# - env, keyword "sweb.env"
# - instance, keyword "sweb.eval"
SET=$2
if [ -z "$LEVEL" ]; then
echo "Usage: $0 <cache_level> <set>"
echo "cache_level: base, env, or instance"
echo "set: lite, full"
exit 1
fi
if [ -z "$SET" ]; then
echo "Usage: $0 <cache_level> <set>"
echo "cache_level: base, env, or instance"
echo "set: lite, full, default is lite"
SET="lite"
fi
if [ "$SET" == "full" ]; then
IMAGE_FILE="$(dirname "$0")/all-visualswebench-full-instance-images.txt"
else
IMAGE_FILE="$(dirname "$0")/all-visualswebench-full-instance-images.txt"
fi
# Define a pattern based on the level
case $LEVEL in
base)
PATTERN="sweb.base"
;;
env)
PATTERN="sweb.base\|sweb.env"
;;
instance)
PATTERN="sweb.base\|sweb.env\|sweb.eval"
;;
*)
echo "Invalid cache level: $LEVEL"
echo "Valid levels are: base, env, instance"
exit 1
;;
esac
echo "Pulling docker images for [$LEVEL] level"
echo "Pattern: $PATTERN"
echo "Image file: $IMAGE_FILE"
# Read each line from the file, filter by pattern, and pull the docker image
grep "$PATTERN" "$IMAGE_FILE" | while IFS= read -r image; do
echo "Pulling $image into $image"
docker pull $image
# replace _s_ to __ in the image name
renamed_image=$(echo "$image" | sed 's|.*/||; s/_s_/__/g')
docker tag $image $renamed_image
done

View File

@@ -0,0 +1,141 @@
#!/bin/bash
PROCESS_FILEPATH=$1
if [ -z "$PROCESS_FILEPATH" ]; then
echo "Error: PROCESS_FILEPATH is empty. Usage: ./eval_infer.sh <output_file> [instance_id] [dataset_name] [split]"
exit 1
fi
if [ ! -f $PROCESS_FILEPATH ]; then
echo "Error: $PROCESS_FILEPATH is not a file"
exit 1
fi
# If instance_id is empty, it means we want to eval on the whole $PROCESS_FILEPATH
# otherwise, we want to eval on the instance_id
INSTANCE_ID=$2
DATASET_NAME=${3:-"luolin101/Visual-SWE-bench"}
SPLIT=${4:-"test"}
echo "INSTANCE_ID: $INSTANCE_ID"
echo "DATASET_NAME: $DATASET_NAME"
echo "SPLIT: $SPLIT"
PROCESS_FILEPATH=$(realpath $PROCESS_FILEPATH)
FILE_DIR=$(dirname $PROCESS_FILEPATH)
FILE_NAME=$(basename $PROCESS_FILEPATH)
echo "Evaluating $FILE_NAME @ $FILE_DIR"
# ================================================
# detect whether PROCESS_FILEPATH is in OH format or in SWE-bench format
echo "=============================================================="
echo "Detecting whether PROCESS_FILEPATH is in OH format or in SWE-bench format"
echo "=============================================================="
# SWE-bench format is a JSONL where every line has three fields: model_name_or_path, instance_id, and model_patch
function is_swebench_format() {
# Read the first line of the file
read -r first_line < "$PROCESS_FILEPATH"
# Use jq to check if the first line has the required fields
echo "$first_line" | jq -e '. | has("model_name_or_path") and has("instance_id") and has("model_patch")' > /dev/null
if [ $? -ne 0 ]; then
return 1 # Return 1 if the first line does not have the required fields
fi
return 0 # Return 0 if the first line has the required fields
}
# Call the function with the file path
is_swebench_format "$PROCESS_FILEPATH"
IS_SWEBENCH_FORMAT=$?
# Use the result in an if-else statement
if [ $IS_SWEBENCH_FORMAT -eq 0 ]; then
echo "The file IS in SWE-bench format."
SWEBENCH_FORMAT_JSONL=$PROCESS_FILEPATH
else
echo "The file IS NOT in SWE-bench format."
# ==== Convert OH format to SWE-bench format ====
echo "Merged output file with fine-grained report will be saved to $FILE_DIR"
poetry run python3 evaluation/benchmarks/swe_bench/scripts/eval/convert_oh_output_to_swe_json.py $PROCESS_FILEPATH
# replace .jsonl with .swebench.jsonl in filename
SWEBENCH_FORMAT_JSONL=${PROCESS_FILEPATH/.jsonl/.swebench.jsonl}
echo "SWEBENCH_FORMAT_JSONL: $SWEBENCH_FORMAT_JSONL"
# assert that the file exists
if [ ! -f $SWEBENCH_FORMAT_JSONL ]; then
echo "Error: $SWEBENCH_FORMAT_JSONL does not exist. There is probably an error in the conversion process."
exit 1
fi
SWEBENCH_FORMAT_JSONL=$(realpath $SWEBENCH_FORMAT_JSONL)
fi
# ================================================
echo "=============================================================="
echo "Running SWE-bench evaluation"
echo "=============================================================="
RUN_ID=$(date +"%Y%m%d_%H%M%S")
N_PROCESS=16
if [ -z "$INSTANCE_ID" ]; then
echo "Running SWE-bench evaluation on the whole input file..."
# Default to SWE-Bench-lite
# change `--dataset_name` and `--split` to alter dataset
poetry run python -m visualswebench.harness.run_evaluation \
--dataset_name "$DATASET_NAME" \
--split "$SPLIT" \
--predictions_path $SWEBENCH_FORMAT_JSONL \
--timeout 1800 \
--cache_level instance \
--max_workers $N_PROCESS \
--run_id $RUN_ID
# get the "model_name_or_path" from the first line of the SWEBENCH_FORMAT_JSONL
MODEL_NAME_OR_PATH=$(jq -r '.model_name_or_path' $SWEBENCH_FORMAT_JSONL | head -n 1)
echo "MODEL_NAME_OR_PATH: $MODEL_NAME_OR_PATH"
RESULT_OUTPUT_DIR=$(dirname $SWEBENCH_FORMAT_JSONL)
echo "RESULT_OUTPUT_DIR: $RESULT_OUTPUT_DIR"
# move the eval results to the target directory
mkdir -p $RESULT_OUTPUT_DIR
# rm eval_outputs directory if it exists
if [ -d $RESULT_OUTPUT_DIR/eval_outputs ]; then
rm -rf $RESULT_OUTPUT_DIR/eval_outputs
fi
mv logs/run_evaluation/$RUN_ID/$MODEL_NAME_OR_PATH $RESULT_OUTPUT_DIR
mv $RESULT_OUTPUT_DIR/$MODEL_NAME_OR_PATH $RESULT_OUTPUT_DIR/eval_outputs
echo "RUN_ID: $RUN_ID" > $RESULT_OUTPUT_DIR/run_id.txt
# move report file
REPORT_PATH=$MODEL_NAME_OR_PATH.$RUN_ID.json
if [ -f $REPORT_PATH ]; then
# check if $RESULT_OUTPUT_DIR/report.json exists
if [ -f $RESULT_OUTPUT_DIR/report.json ]; then
echo "Report file $RESULT_OUTPUT_DIR/report.json already exists. Overwriting..."
if [ -f $RESULT_OUTPUT_DIR/report.json.bak ]; then
rm $RESULT_OUTPUT_DIR/report.json.bak
fi
mv $RESULT_OUTPUT_DIR/report.json $RESULT_OUTPUT_DIR/report.json.bak
fi
mv $REPORT_PATH $RESULT_OUTPUT_DIR/report.json
fi
poetry run python evaluation/benchmarks/swe_bench/scripts/eval/update_output_with_eval.py $PROCESS_FILEPATH
else
echo "Running SWE-bench evaluation on the instance_id: $INSTANCE_ID"
poetry run python -m visualswebench.harness.run_evaluation \
--dataset_name "$DATASET_NAME" \
--split "$SPLIT" \
--predictions_path $SWEBENCH_FORMAT_JSONL \
--timeout 1800 \
--instance_ids $INSTANCE_ID \
--cache_level instance \
--max_workers $N_PROCESS \
--run_id $RUN_ID
fi

View File

@@ -0,0 +1,117 @@
#!/bin/bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
MAX_ITER=$5
NUM_WORKERS=$6
DATASET=$7
SPLIT=$8
N_RUNS=$9
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
if [ -z "$MAX_ITER" ]; then
echo "MAX_ITER not specified, use default 100"
MAX_ITER=100
fi
if [ -z "$USE_INSTANCE_IMAGE" ]; then
echo "USE_INSTANCE_IMAGE not specified, use default true"
USE_INSTANCE_IMAGE=true
fi
if [ -z "$RUN_WITH_BROWSING" ]; then
echo "RUN_WITH_BROWSING not specified, use default false"
RUN_WITH_BROWSING=false
fi
if [ -z "$DATASET" ]; then
echo "DATASET not specified, use default luolin101/Visual-SWE-bench"
DATASET="luolin101/Visual-SWE-bench"
fi
if [ -z "$SPLIT" ]; then
echo "SPLIT not specified, use default test"
SPLIT="test"
fi
export USE_INSTANCE_IMAGE=$USE_INSTANCE_IMAGE
echo "USE_INSTANCE_IMAGE: $USE_INSTANCE_IMAGE"
export RUN_WITH_BROWSING=$RUN_WITH_BROWSING
echo "RUN_WITH_BROWSING: $RUN_WITH_BROWSING"
get_openhands_version
echo "AGENT: $AGENT"
echo "OPENHANDS_VERSION: $OPENHANDS_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
echo "DATASET: $DATASET"
echo "SPLIT: $SPLIT"
# Default to NOT use Hint
if [ -z "$USE_HINT_TEXT" ]; then
export USE_HINT_TEXT=false
fi
echo "USE_HINT_TEXT: $USE_HINT_TEXT"
EVAL_NOTE="$OPENHANDS_VERSION"
# if not using Hint, add -no-hint to the eval note
if [ "$USE_HINT_TEXT" = false ]; then
EVAL_NOTE="$EVAL_NOTE-no-hint"
fi
if [ "$RUN_WITH_BROWSING" = true ]; then
EVAL_NOTE="$EVAL_NOTE-with-browsing"
fi
if [ -n "$EXP_NAME" ]; then
EVAL_NOTE="$EVAL_NOTE-$EXP_NAME"
fi
function run_eval() {
local eval_note=$1
COMMAND="poetry run python evaluation/benchmarks/visual_swe_bench/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations $MAX_ITER \
--eval-num-workers $NUM_WORKERS \
--eval-note $eval_note \
--dataset $DATASET \
--split $SPLIT"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND
}
unset SANDBOX_ENV_GITHUB_TOKEN # prevent the agent from using the github token to push
if [ -z "$N_RUNS" ]; then
N_RUNS=1
echo "N_RUNS not specified, use default $N_RUNS"
fi
for i in $(seq 1 $N_RUNS); do
current_eval_note="$EVAL_NOTE-run_$i"
echo "EVAL_NOTE: $current_eval_note"
run_eval $current_eval_note
done
checkout_original_branch

View File

@@ -0,0 +1,40 @@
#!/bin/bash
source ~/.bashrc
SWEUTIL_DIR=/swe_util
# FIXME: Cannot read SWE_INSTANCE_ID from the environment variable
# SWE_INSTANCE_ID=django__django-11099
if [ -z "$SWE_INSTANCE_ID" ]; then
echo "Error: SWE_INSTANCE_ID is not set." >&2
exit 1
fi
# Read the swe-bench-test-lite.json file and extract the required item based on instance_id
item=$(jq --arg INSTANCE_ID "$SWE_INSTANCE_ID" '.[] | select(.instance_id == $INSTANCE_ID)' $SWEUTIL_DIR/eval_data/instances/swe-bench-instance.json)
if [[ -z "$item" ]]; then
echo "No item found for the provided instance ID."
exit 1
fi
WORKSPACE_NAME=$(echo "$item" | jq -r '(.repo | tostring) + "__" + (.version | tostring) | gsub("/"; "__")')
echo "WORKSPACE_NAME: $WORKSPACE_NAME"
# Clear the workspace
if [ -d /workspace ]; then
rm -rf /workspace/*
else
mkdir /workspace
fi
# Copy repo to workspace
if [ -d /workspace/$WORKSPACE_NAME ]; then
rm -rf /workspace/$WORKSPACE_NAME
fi
mkdir -p /workspace
cp -r /testbed /workspace/$WORKSPACE_NAME
# Activate instance-specific environment
. /opt/miniconda3/etc/profile.d/conda.sh
conda activate testbed