mirror of
https://github.com/All-Hands-AI/OpenHands.git
synced 2026-01-09 14:57:59 -05:00
enh: Organizing condenser implementations (#6529)
Co-authored-by: Calvin Smith <calvin@all-hands.dev>
This commit is contained in:
116
openhands/memory/condenser/impl/llm_attention_condenser.py
Normal file
116
openhands/memory/condenser/impl/llm_attention_condenser.py
Normal file
@@ -0,0 +1,116 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from litellm import supports_response_schema
|
||||
from pydantic import BaseModel
|
||||
|
||||
from openhands.core.config.condenser_config import LLMAttentionCondenserConfig
|
||||
from openhands.events.event import Event
|
||||
from openhands.llm.llm import LLM
|
||||
from openhands.memory.condenser.condenser import RollingCondenser
|
||||
|
||||
|
||||
class ImportantEventSelection(BaseModel):
|
||||
"""Utility class for the `LLMAttentionCondenser` that forces the LLM to return a list of integers."""
|
||||
|
||||
ids: list[int]
|
||||
|
||||
|
||||
class LLMAttentionCondenser(RollingCondenser):
|
||||
"""Rolling condenser strategy that uses an LLM to select the most important events when condensing the history."""
|
||||
|
||||
def __init__(self, llm: LLM, max_size: int = 100, keep_first: int = 0):
|
||||
if keep_first >= max_size // 2:
|
||||
raise ValueError(
|
||||
f'keep_first ({keep_first}) must be less than half of max_size ({max_size})'
|
||||
)
|
||||
if keep_first < 0:
|
||||
raise ValueError(f'keep_first ({keep_first}) cannot be negative')
|
||||
if max_size < 1:
|
||||
raise ValueError(f'max_size ({keep_first}) cannot be non-positive')
|
||||
|
||||
self.max_size = max_size
|
||||
self.keep_first = keep_first
|
||||
self.llm = llm
|
||||
|
||||
# This condenser relies on the `response_schema` feature, which is not supported by all LLMs
|
||||
if not supports_response_schema(
|
||||
model=self.llm.config.model,
|
||||
custom_llm_provider=self.llm.config.custom_llm_provider,
|
||||
):
|
||||
raise ValueError(
|
||||
"The LLM model must support the 'response_schema' parameter to use the LLMAttentionCondenser."
|
||||
)
|
||||
|
||||
super().__init__()
|
||||
|
||||
def condense(self, events: list[Event]) -> list[Event]:
|
||||
"""If the history is too long, use an LLM to select the most important events."""
|
||||
if len(events) <= self.max_size:
|
||||
return events
|
||||
|
||||
target_size = self.max_size // 2
|
||||
head = events[: self.keep_first]
|
||||
|
||||
events_from_tail = target_size - len(head)
|
||||
|
||||
message: str = """You will be given a list of actions, observations, and thoughts from a coding agent.
|
||||
Each item in the list has an identifier. Please sort the identifiers in order of how important the
|
||||
contents of the item are for the next step of the coding agent's task, from most important to least
|
||||
important."""
|
||||
|
||||
response = self.llm.completion(
|
||||
messages=[
|
||||
{'content': message, 'role': 'user'},
|
||||
*[
|
||||
{
|
||||
'content': f'<ID>{e.id}</ID>\n<CONTENT>{e.message}</CONTENT>',
|
||||
'role': 'user',
|
||||
}
|
||||
for e in events
|
||||
],
|
||||
],
|
||||
response_format={
|
||||
'type': 'json_schema',
|
||||
'json_schema': {
|
||||
'name': 'ImportantEventSelection',
|
||||
'schema': ImportantEventSelection.model_json_schema(),
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
response_ids = ImportantEventSelection.model_validate_json(
|
||||
response.choices[0].message.content
|
||||
).ids
|
||||
|
||||
self.add_metadata('all_event_ids', [event.id for event in events])
|
||||
self.add_metadata('response_ids', response_ids)
|
||||
self.add_metadata('metrics', self.llm.metrics.get())
|
||||
|
||||
# Filter out any IDs from the head and trim the results down
|
||||
head_ids = [event.id for event in head]
|
||||
response_ids = [
|
||||
response_id for response_id in response_ids if response_id not in head_ids
|
||||
][:events_from_tail]
|
||||
|
||||
# If the response IDs aren't _long_ enough, iterate backwards through the events and add any unfound IDs to the list.
|
||||
for event in reversed(events):
|
||||
if len(response_ids) >= events_from_tail:
|
||||
break
|
||||
if event.id not in response_ids:
|
||||
response_ids.append(event.id)
|
||||
|
||||
# Grab the events associated with the response IDs
|
||||
tail = [event for event in events if event.id in response_ids]
|
||||
|
||||
return head + tail
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: LLMAttentionCondenserConfig) -> LLMAttentionCondenser:
|
||||
return LLMAttentionCondenser(
|
||||
llm=LLM(config=config.llm_config),
|
||||
max_size=config.max_size,
|
||||
keep_first=config.keep_first,
|
||||
)
|
||||
|
||||
|
||||
LLMAttentionCondenser.register_config(LLMAttentionCondenserConfig)
|
||||
Reference in New Issue
Block a user