Fix issue #5222: [Refactor]: Refactor the evaluation directory (#5223)

Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
This commit is contained in:
OpenHands
2024-11-25 08:35:52 -05:00
committed by GitHub
parent 1725627c7d
commit 678436da30
152 changed files with 147 additions and 143 deletions

View File

@@ -0,0 +1,38 @@
# AgentBench Evaluation
This folder contains evaluation harness for evaluating agents on the [AgentBench: Evaluating LLMs as Agents](https://arxiv.org/abs/2308.03688). We currently only support running on the `osbench` subset.
## Setup Environment and LLM Configuration
Please follow instruction [here](../README.md#setup) to setup your local development environment and LLM.
## Start the evaluation
```bash
./evaluation/benchmarks/agent_bench/scripts/run_infer.sh [model_config] [git-version] [agent] [eval_limit]
```
- `model_config`, e.g. `eval_gpt4_1106_preview`, is the config group name for your
LLM settings, as defined in your `config.toml`.
- `git-version`, e.g. `HEAD`, is the git commit hash of the OpenHands version you would
like to evaluate. It could also be a release tag like `0.6.2`.
- `agent`, e.g. `CodeActAgent`, is the name of the agent for benchmarks, defaulting
to `CodeActAgent`.
- `eval_limit`, e.g. `10`, limits the evaluation to the first `eval_limit` instances. By
default, the script evaluates the entire SWE-bench_Lite test set (300 issues). Note:
in order to use `eval_limit`, you must also set `agent`.
Following is the basic command to start the evaluation.
You can update the arguments in the script `evaluation/benchmarks/agent_bench/scripts/run_infer.sh`, such as `--max-iterations`, `--eval-num-workers` and so on.
- `--agent-cls`, the agent to use. For example, `CodeActAgent`.
- `--llm-config`: the LLM configuration to use. For example, `eval_gpt4_1106_preview`.
- `--max-iterations`: the number of iterations to run the evaluation. For example, `30`.
- `--eval-num-workers`: the number of workers to use for evaluation. For example, `5`.
- `--eval-n-limit`: the number of examples to evaluate. For example, `100`.
```bash
./evaluation/benchmarks/agent_bench/scripts/run_infer.sh eval_gpt35_turbo HEAD CodeActAgent 1
```

View File

@@ -0,0 +1,77 @@
import os
import re
from functools import partial
from evaluation.utils.shared import codeact_user_response
from openhands.events.action import CmdRunAction, MessageAction
def try_parse_answer(act) -> str | None:
raw_ans = ''
if isinstance(act, MessageAction) and act.source == 'agent':
raw_ans = act.content
elif isinstance(act, CmdRunAction) and act.source == 'agent':
raw_ans = act.thought
else:
return None
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL)
if not agent_answer:
return None
return agent_answer[0].strip()
FAKE_RESPONSES = {
'CodeActAgent': partial(
codeact_user_response, encapsulate_solution=True, try_parse=try_parse_answer
),
}
INST_SUFFIXES: dict[str, str] = {
'CodeActAgent': (
'When you think you have solved the question, '
'please first send your answer to user through message and then exit.\n'
)
}
def analysis_size(size_str):
size_str = size_str.strip()
avails = {
'B': 1,
'Byte': 1,
'K': 1024,
'KB': 1024,
'M': 1024 * 1024,
'MB': 1024 * 1024,
'G': 1024 * 1024 * 1024,
'GB': 1024 * 1024 * 1024,
'T': 1024 * 1024 * 1024 * 1024,
'TB': 1024 * 1024 * 1024 * 1024,
'P': 1024 * 1024 * 1024 * 1024 * 1024,
'PB': 1024 * 1024 * 1024 * 1024 * 1024,
}
for size_unit in avails:
if size_str.endswith(size_unit):
return int(size_str[: -len(size_unit)]) * avails[size_unit]
return int(size_str)
def compare_results(check_method: str, model_answer: str, final_ans: str) -> bool:
try:
match check_method:
case 'check/integer-match.py':
return int(model_answer) == int(final_ans)
case 'check/size-match.py':
return analysis_size(model_answer) == analysis_size(final_ans)
return (
model_answer.replace('\r\n', '\n').replace('\r', '\n').strip()
== final_ans.replace('\r\n', '\n').replace('\r', '\n').strip()
)
except Exception:
return False
def create_sh_file(filename: str, cmds: str) -> None:
with open(filename, 'w', encoding='utf-8') as file:
file.write(cmds.replace('\r\n', '\n'))
os.chmod(filename, 0o755)

View File

@@ -0,0 +1,323 @@
import asyncio
import os
import re
import tempfile
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.agent_bench.helper import (
FAKE_RESPONSES,
INST_SUFFIXES,
compare_results,
create_sh_file,
)
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
init_cmd = instance.init
if init_cmd is not None:
script_name = f'{instance.instance_id}_init.sh'
with tempfile.TemporaryDirectory() as tmpdir:
host_script_path = os.path.join(tmpdir, script_name)
create_sh_file(host_script_path, init_cmd)
runtime.copy_to(
host_script_path,
'/workspace',
)
logger.info(f'Running init script: {script_name}')
action = CmdRunAction(command=f'chmod +x ./{script_name} && ./{script_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
agent_answer = None
get_agent_result_cmd = instance.get_agent_result
if get_agent_result_cmd is not None:
script_name = 'get_agent_result.sh'
with tempfile.TemporaryDirectory() as tmpdir:
host_script_path = os.path.join(tmpdir, script_name)
create_sh_file(host_script_path, get_agent_result_cmd)
runtime.copy_to(
host_script_path,
'/workspace',
)
logger.info(f'Running get agent result cmd: {script_name}')
action = CmdRunAction(
command=f'chmod +x ./{script_name} && ./{script_name}',
keep_prompt=False,
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
agent_answer = obs.content
# IF the agent answer is not found, retrieve it from the history
# We wait until the controller finishes
final_ans = None
if instance.ground_truth is not None:
final_ans = instance.ground_truth
else:
get_ground_truth_cmd = instance.get_ground_truth
if get_ground_truth_cmd is not None:
script_name = 'get_ground_truth.sh'
with tempfile.TemporaryDirectory() as tmpdir:
host_script_path = os.path.join(tmpdir, script_name)
create_sh_file(host_script_path, get_ground_truth_cmd)
runtime.copy_to(
host_script_path,
'/workspace',
)
logger.info(f'Running get ground truth cmd: {script_name}')
action = CmdRunAction(
command=f'chmod +x ./{script_name} && ./{script_name}',
keep_prompt=False,
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
final_ans = obs.content
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return {
'final_ans': final_ans,
'agent_answer': agent_answer,
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# =============================================
# build instruction
# =============================================
# Prepare instruction
instruction = (
f'Please fix the following issue.\n'
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
'# Problem \n'
f'{instance.description}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided '
'to you AND NEVER ASK FOR HUMAN HELP.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += INST_SUFFIXES[metadata.agent_class]
# =============================================
# create sandbox and run the agent
# =============================================
runtime: Runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance=instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
)
)
if state is None:
raise ValueError('State should not be None.')
# =============================================
# result evaluation
# =============================================
return_val = complete_runtime(runtime, instance)
agent_answer = return_val['agent_answer']
final_ans = return_val['final_ans']
# If the agent answer is not found, retrieve it from the history
if agent_answer is None:
agent_answer = ''
logger.info('Retrieving agent answer from history.')
raw_ans = ''
# retrieve the last agent message or thought
for event in reversed(state.history):
if event.source == 'agent':
if isinstance(event, AgentFinishAction):
raw_ans = event.thought
break
elif isinstance(event, MessageAction):
raw_ans = event.content
break
elif isinstance(event, CmdRunAction):
raw_ans = event.thought
break
# parse the answer for a solution tag
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL)
if len(agent_answer) == 0:
logger.warning(f'Failed to parse model answer: {raw_ans}')
agent_answer = raw_ans
else:
agent_answer = agent_answer[0]
comparison_method = instance.comparison_method
logger.info(
f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
)
test_result = compare_results(comparison_method, agent_answer, final_ans)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'agent_answer': agent_answer,
'final_answer': final_ans,
'check_method': comparison_method,
'result': test_result,
},
)
return output
if __name__ == '__main__':
args = parse_arguments()
dataset = load_dataset('iFurySt/AgentBench')
agent_bench_tests = dataset['osbench'].to_pandas()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'AgentBench-OS',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(agent_bench_tests, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)

View File

@@ -0,0 +1,42 @@
#!/bin/bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
NUM_WORKERS=$5
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
get_agent_version
echo "AGENT: $AGENT"
echo "AGENT_VERSION: $AGENT_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
COMMAND="export PYTHONPATH=evaluation/benchmarks/agent_bench:\$PYTHONPATH && poetry run python evaluation/benchmarks/agent_bench/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations 30 \
--eval-num-workers $NUM_WORKERS \
--eval-note $AGENT_VERSION"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND

View File

@@ -0,0 +1,37 @@
import json
import sys
def extract_test_results(res_file_path: str) -> tuple[list[str], list[str]]:
passed = []
failed = []
with open(res_file_path, 'r') as file:
for line in file:
data = json.loads(line.strip())
instance_id = data['instance_id']
resolved = False
if 'test_result' in data and 'result' in data['test_result']:
resolved = data['test_result']['result']
if resolved:
passed.append(instance_id)
else:
failed.append(instance_id)
return passed, failed
if __name__ == '__main__':
if len(sys.argv) != 2:
print(
'Usage: poetry run python summarise_results.py <path_to_output_jsonl_file>'
)
sys.exit(1)
json_file_path = sys.argv[1]
passed_tests, failed_tests = extract_test_results(json_file_path)
succ_rate = len(passed_tests) / (len(passed_tests) + len(failed_tests))
print(
f'\nPassed {len(passed_tests)} tests, failed {len(failed_tests)} tests, resolve rate = {succ_rate}'
)
print('PASSED TESTS:')
print(passed_tests)
print('FAILED TESTS:')
print(failed_tests)