"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in "OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124). Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py for the reference implementation used in the paper. TODOs: - Potentially support other HumanEvalPack datasets (Explain & Synthesize) - Support other languages (currently only Python) """ import asyncio import logging import os import pathlib import pandas as pd from datasets import load_dataset from evaluate import load from evaluation.utils.shared import ( EvalMetadata, codeact_user_response, make_metadata, prepare_dataset, run_evaluation, ) from opendevin.controller.agent import Agent from opendevin.controller.state.state import State from opendevin.core.config import config, get_llm_config_arg, parse_arguments from opendevin.core.logger import get_console_handler from opendevin.core.logger import opendevin_logger as logger from opendevin.core.main import run_agent_controller from opendevin.llm.llm import LLM IMPORT_HELPER = { 'python': [ 'import math', 'import re', 'import sys', 'import copy', 'import datetime', 'import itertools', 'import collections', 'import heapq', 'import statistics', 'import functools', 'import hashlib', 'import numpy', 'import numpy as np', 'import string', 'from typing import *', 'from collections import *', ], } LANGUAGE_TO_TIMEOUT = { 'python': 10, } LANGUAGE_TO_NUM_WORKERS = { 'python': 4, } AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } AGENT_CLS_TO_INST_SUFFIX = { 'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: exit .\n' } def get_test_result(instance, path, language='python', timeout=10): # Evaluation reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L347 test_result = {'result': {}, 'metadata': {}} code_metric = load('Muennighoff/code_eval_octopack') timeout = LANGUAGE_TO_TIMEOUT[language] num_workers = LANGUAGE_TO_NUM_WORKERS[language] python_imports = '\n'.join(IMPORT_HELPER[language]) # Load function from path with open(path, 'r') as f: function = f.read() function = [[python_imports + '\n' + function.strip()]] results, logs = code_metric.compute( references=[instance.test], predictions=function, language=language, timeout=timeout, num_workers=num_workers, ) test_result['result'] = results test_result['metadata'] = { 'logs': logs, 'timeout': timeout, 'num_workers': num_workers, } return test_result def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ): # Create the agent agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config)) old_workspace_mount_path = config.workspace_mount_path old_workspace_base = config.workspace_base try: workspace_mount_path = os.path.join( config.workspace_mount_path, '_eval_workspace' ) # create process-specific workspace dir workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid())) pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True) # reset workspace to config config.workspace_base = workspace_mount_path config.workspace_mount_path = workspace_mount_path # use a session id for concurrent evaluation sid = instance.task_id.replace('/', '__') # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: # Set up logger log_file = os.path.join( metadata.eval_output_dir, 'logs', f'instance_{sid}.log', ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) # add back the console handler to print ONE line logger.addHandler(get_console_handler()) logger.info( f'Starting evaluation for instance {instance.task_id}.\nLOG: tail -f {log_file}' ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) file_handler = logging.FileHandler(log_file) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) logger.addHandler(file_handler) logger.info(f'Process-specific workspace mounted at {workspace_mount_path}') # Create file with HumanEvalFix problem # Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509 problem_statement = ( instance.declaration + instance.buggy_solution + '\n' + instance.test ) path = os.path.join(workspace_mount_path, f'{sid}.py') with open(path, 'w') as f: f.write(problem_statement) # Prepare instruction instruction = ( f'Please fix the function in {instance.task_id.replace("/", "__")}.py such that all test cases pass.\n' 'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n' '# Problem Statement\n' f'{problem_statement}\n\n' ) instruction += ( 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' 'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n' 'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n' ) # NOTE: You can actually set slightly different instruction for different agents instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__] # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_agent_controller( agent, instruction, max_iterations=metadata.max_iterations, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( agent.__class__.__name__ ), sid=sid, ) ) # ======= Attempt to evaluate the agent's edits ======= test_result = get_test_result(instance, path) # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. if state is None: raise ValueError('State should not be None.') metrics = state.metrics.get() if state.metrics else None # history is now available as a stream of events, rather than list of pairs of (Action, Observation) # for compatibility with the existing output format, we can remake the pairs here # remove when it becomes unnecessary histories = state.history.compatibility_for_eval_history_pairs() # Save the output output = { 'task_id': instance.task_id, 'instruction': instruction, 'metadata': metadata.model_dump(), 'history': histories, 'metrics': metrics, 'error': state.last_error if state and state.last_error else None, 'test_result': test_result, } except Exception: logger.error('Process instance failed') raise finally: config.workspace_mount_path = old_workspace_mount_path config.workspace_base = old_workspace_base return output if __name__ == '__main__': args = parse_arguments() # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing # so we don't need to manage file uploading to OpenDevin's repo dataset = load_dataset( 'bigcode/humanevalpack', 'python' ) # TODO: Support other languages hefix_tests = dataset['test'].to_pandas() id_column = 'task_id' llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm logger.info(f'Config for evaluation: {config}') metadata = make_metadata( llm_config, args.dataset_name, args.agent_cls, args.max_iterations, args.eval_note, args.eval_output_dir, ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset(dataset, output_file, args.eval_n_limit, id_column) run_evaluation( instances, metadata, output_file, args.eval_num_workers, process_instance, id_column, )