Files
OpenHands/evaluation/benchmarks/bfcl/run_infer.py
2025-12-31 03:12:50 +00:00

197 lines
6.2 KiB
Python

import asyncio
import os
import pandas as pd # type: ignore
# Assuming bfcl-eval is installed or we use a similar local structure
# The user mentioned: "Integrate bfcl-eval package for official metrics"
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
get_default_sandbox_config_for_eval,
get_metrics,
get_openhands_config_for_eval,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
OpenHandsConfig,
get_evaluation_parser,
get_llm_config_arg,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> OpenHandsConfig:
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = 'python:3.12-bookworm'
config = get_openhands_config_for_eval(
metadata=metadata,
runtime='docker',
sandbox_config=sandbox_config,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = str(instance['id']).replace(
'/', '_'
) # BFCL IDs might contain slashes
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
# BFCL usually has a question/prompt and associated functions
question = instance['question']
# We might need to format it with available tools?
# For now, let's assume the agent can handle raw text or we format it.
instruction = f'Question: {question}\n'
# instruction += f"Available Functions: {instance['function']}\n"
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
if state is None:
raise ValueError('State should not be None.')
metrics = get_metrics(state)
histories = compatibility_for_eval_history_pairs(state.history)
last_agent_message = state.get_last_agent_message()
model_answer_raw = last_agent_message.content if last_agent_message else ''
output = EvalOutput(
instance_id=instance_id,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'generated_text': model_answer_raw,
# We will use bfcl-eval to score offline/post-hoc usually,
# or we can try to score here if the package allows easy single-instance scoring.
},
)
return output
if __name__ == '__main__':
parser = get_evaluation_parser()
parser.add_argument(
'--dataset-path',
type=str,
help='Path to the BFCL dataset (json/jsonl)',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
llm_config.modify_params = False
# Load dataset
if args.dataset_path:
if args.dataset_path.endswith('.json'):
dataset_df = pd.read_json(args.dataset_path)
elif args.dataset_path.endswith('.jsonl'):
dataset_df = pd.read_json(args.dataset_path, lines=True)
else:
raise ValueError('Dataset must be .json or .jsonl')
else:
# Try to load from huggingface or default location?
# For now require path or create dummy
logger.warning('No dataset path provided, creating dummy dataset.')
dataset_df = pd.DataFrame(
[
{
'id': 'test-0',
'question': 'What is the weather in San Francisco?',
'function': [
{
'name': 'get_weather',
'parameters': {'location': 'San Francisco'},
}
],
}
]
)
if 'instance_id' not in dataset_df.columns:
if 'id' in dataset_df.columns:
dataset_df['instance_id'] = dataset_df['id']
else:
dataset_df['instance_id'] = dataset_df.index.astype(str)
metadata = make_metadata(
llm_config=llm_config,
dataset_name='bfcl',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset = prepare_dataset(
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
)
run_evaluation(
dataset=dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)