mirror of
https://github.com/All-Hands-AI/OpenHands.git
synced 2026-01-06 21:44:00 -05:00
197 lines
6.2 KiB
Python
197 lines
6.2 KiB
Python
import asyncio
|
|
import os
|
|
|
|
import pandas as pd # type: ignore
|
|
|
|
# Assuming bfcl-eval is installed or we use a similar local structure
|
|
# The user mentioned: "Integrate bfcl-eval package for official metrics"
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
get_default_sandbox_config_for_eval,
|
|
get_metrics,
|
|
get_openhands_config_for_eval,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
OpenHandsConfig,
|
|
get_evaluation_parser,
|
|
get_llm_config_arg,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> OpenHandsConfig:
|
|
sandbox_config = get_default_sandbox_config_for_eval()
|
|
sandbox_config.base_container_image = 'python:3.12-bookworm'
|
|
config = get_openhands_config_for_eval(
|
|
metadata=metadata,
|
|
runtime='docker',
|
|
sandbox_config=sandbox_config,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
instance_id = str(instance['id']).replace(
|
|
'/', '_'
|
|
) # BFCL IDs might contain slashes
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
|
# Prepare instruction
|
|
# BFCL usually has a question/prompt and associated functions
|
|
question = instance['question']
|
|
# We might need to format it with available tools?
|
|
# For now, let's assume the agent can handle raw text or we format it.
|
|
|
|
instruction = f'Question: {question}\n'
|
|
# instruction += f"Available Functions: {instance['function']}\n"
|
|
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = get_metrics(state)
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
last_agent_message = state.get_last_agent_message()
|
|
model_answer_raw = last_agent_message.content if last_agent_message else ''
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance_id,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'generated_text': model_answer_raw,
|
|
# We will use bfcl-eval to score offline/post-hoc usually,
|
|
# or we can try to score here if the package allows easy single-instance scoring.
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_evaluation_parser()
|
|
parser.add_argument(
|
|
'--dataset-path',
|
|
type=str,
|
|
help='Path to the BFCL dataset (json/jsonl)',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
llm_config.modify_params = False
|
|
|
|
# Load dataset
|
|
if args.dataset_path:
|
|
if args.dataset_path.endswith('.json'):
|
|
dataset_df = pd.read_json(args.dataset_path)
|
|
elif args.dataset_path.endswith('.jsonl'):
|
|
dataset_df = pd.read_json(args.dataset_path, lines=True)
|
|
else:
|
|
raise ValueError('Dataset must be .json or .jsonl')
|
|
else:
|
|
# Try to load from huggingface or default location?
|
|
# For now require path or create dummy
|
|
logger.warning('No dataset path provided, creating dummy dataset.')
|
|
dataset_df = pd.DataFrame(
|
|
[
|
|
{
|
|
'id': 'test-0',
|
|
'question': 'What is the weather in San Francisco?',
|
|
'function': [
|
|
{
|
|
'name': 'get_weather',
|
|
'parameters': {'location': 'San Francisco'},
|
|
}
|
|
],
|
|
}
|
|
]
|
|
)
|
|
|
|
if 'instance_id' not in dataset_df.columns:
|
|
if 'id' in dataset_df.columns:
|
|
dataset_df['instance_id'] = dataset_df['id']
|
|
else:
|
|
dataset_df['instance_id'] = dataset_df.index.astype(str)
|
|
|
|
metadata = make_metadata(
|
|
llm_config=llm_config,
|
|
dataset_name='bfcl',
|
|
agent_class=args.agent_cls,
|
|
max_iterations=args.max_iterations,
|
|
eval_note=args.eval_note,
|
|
eval_output_dir=args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
dataset = prepare_dataset(
|
|
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
|
|
)
|
|
|
|
run_evaluation(
|
|
dataset=dataset,
|
|
metadata=metadata,
|
|
output_file=output_file,
|
|
num_workers=args.eval_num_workers,
|
|
process_instance_func=process_instance,
|
|
)
|