Files
OpenHands/evaluation/benchmarks/tau_bench/run_infer.py
2025-12-31 03:12:50 +00:00

222 lines
7.0 KiB
Python

import asyncio
import os
from typing import Any
import pandas as pd # type: ignore
try:
from tau_bench.agents.base import Agent as TauAgent # type: ignore
from tau_bench.envs import get_env # type: ignore
from tau_bench.types import EnvInfo # type: ignore
except ImportError:
TauAgent = Any
get_env = Any
EnvInfo = Any
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
get_default_sandbox_config_for_eval,
get_metrics,
get_openhands_config_for_eval,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
OpenHandsConfig,
get_evaluation_parser,
get_llm_config_arg,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> OpenHandsConfig:
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = 'python:3.12-bookworm'
config = get_openhands_config_for_eval(
metadata=metadata,
runtime='docker',
sandbox_config=sandbox_config,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = str(instance['instance_id'])
# Setup the logger properly
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Initialize Tau-Bench environment
instance['env']
instance['task_index']
# Initialize runtime
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
# Note: We need to figure out how to bridge Tau-Bench environment with OpenHands agent.
# OpenHands agents expect to interact with a runtime (shell/browser).
# Tau-Bench environments provide a python interface.
# For now, we will assume we can run python code in the runtime to interact with Tau-Bench,
# OR we adapt the agent to call Tau-Bench API.
# Given OpenHands agents are general purpose, we probably want to expose Tau-Bench tools
# as Python functions available in the runtime, or standard tools.
# Let's inspect how Tau-Bench works. It seems it requires `tau-bench` package.
# The user request mentioned: "Integrate sierra-research/tau-bench package for dataset and evaluation"
# Since I don't have the package installed yet, I will write the skeleton and then install/mock it.
instruction = instance['instruction']
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
if state is None:
raise ValueError('State should not be None.')
metrics = get_metrics(state)
histories = compatibility_for_eval_history_pairs(state.history)
# Retrieve result from the state or runtime if possible
# For Tau-Bench, we typically need to check if the goal was achieved in the env.
# Placeholder for actual score calculation
score = 0.0
output = EvalOutput(
instance_id=instance_id,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'score': score,
},
)
return output
if __name__ == '__main__':
parser = get_evaluation_parser()
parser.add_argument(
'--env',
type=str,
default='retail',
help='Tau-Bench environment name (retail, airline)',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
llm_config.modify_params = False
# Load dataset
# We need to load tasks from Tau-Bench
# Since we can't import tau_bench yet, we might fail here.
# But I will write the import and let the user/system install it.
try:
from tau_bench.envs import get_env # type: ignore
except ImportError:
logger.error(
'Tau-Bench not installed. Please install it via `pip install tau-bench`'
)
# For now, we create a dummy dataset to allow syntax checking
dataset_df = pd.DataFrame(
[
{
'instance_id': '0',
'env': 'retail',
'task_index': 0,
'instruction': 'Test instruction',
}
]
)
else:
# Load tasks from the environment
env = get_env(args.env)
tasks = env.get_tasks()
data = []
for i, task in enumerate(tasks):
data.append(
{
'instance_id': f'{args.env}_{i}',
'env': args.env,
'task_index': i,
'instruction': task.instruction,
'ground_truth': task.actions, # Or whatever ground truth it provides
}
)
dataset_df = pd.DataFrame(data)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=f'tau-bench-{args.env}',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset = prepare_dataset(
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
)
run_evaluation(
dataset=dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)