mirror of
https://github.com/All-Hands-AI/OpenHands.git
synced 2026-01-09 06:48:02 -05:00
222 lines
7.0 KiB
Python
222 lines
7.0 KiB
Python
import asyncio
|
|
import os
|
|
from typing import Any
|
|
|
|
import pandas as pd # type: ignore
|
|
|
|
try:
|
|
from tau_bench.agents.base import Agent as TauAgent # type: ignore
|
|
from tau_bench.envs import get_env # type: ignore
|
|
from tau_bench.types import EnvInfo # type: ignore
|
|
except ImportError:
|
|
TauAgent = Any
|
|
get_env = Any
|
|
EnvInfo = Any
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
get_default_sandbox_config_for_eval,
|
|
get_metrics,
|
|
get_openhands_config_for_eval,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
OpenHandsConfig,
|
|
get_evaluation_parser,
|
|
get_llm_config_arg,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> OpenHandsConfig:
|
|
sandbox_config = get_default_sandbox_config_for_eval()
|
|
sandbox_config.base_container_image = 'python:3.12-bookworm'
|
|
config = get_openhands_config_for_eval(
|
|
metadata=metadata,
|
|
runtime='docker',
|
|
sandbox_config=sandbox_config,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
instance_id = str(instance['instance_id'])
|
|
|
|
# Setup the logger properly
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
|
# Initialize Tau-Bench environment
|
|
instance['env']
|
|
instance['task_index']
|
|
|
|
# Initialize runtime
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
# Note: We need to figure out how to bridge Tau-Bench environment with OpenHands agent.
|
|
# OpenHands agents expect to interact with a runtime (shell/browser).
|
|
# Tau-Bench environments provide a python interface.
|
|
# For now, we will assume we can run python code in the runtime to interact with Tau-Bench,
|
|
# OR we adapt the agent to call Tau-Bench API.
|
|
|
|
# Given OpenHands agents are general purpose, we probably want to expose Tau-Bench tools
|
|
# as Python functions available in the runtime, or standard tools.
|
|
|
|
# Let's inspect how Tau-Bench works. It seems it requires `tau-bench` package.
|
|
# The user request mentioned: "Integrate sierra-research/tau-bench package for dataset and evaluation"
|
|
|
|
# Since I don't have the package installed yet, I will write the skeleton and then install/mock it.
|
|
|
|
instruction = instance['instruction']
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = get_metrics(state)
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
# Retrieve result from the state or runtime if possible
|
|
# For Tau-Bench, we typically need to check if the goal was achieved in the env.
|
|
|
|
# Placeholder for actual score calculation
|
|
score = 0.0
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance_id,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'score': score,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_evaluation_parser()
|
|
parser.add_argument(
|
|
'--env',
|
|
type=str,
|
|
default='retail',
|
|
help='Tau-Bench environment name (retail, airline)',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
llm_config.modify_params = False
|
|
|
|
# Load dataset
|
|
# We need to load tasks from Tau-Bench
|
|
# Since we can't import tau_bench yet, we might fail here.
|
|
# But I will write the import and let the user/system install it.
|
|
try:
|
|
from tau_bench.envs import get_env # type: ignore
|
|
except ImportError:
|
|
logger.error(
|
|
'Tau-Bench not installed. Please install it via `pip install tau-bench`'
|
|
)
|
|
# For now, we create a dummy dataset to allow syntax checking
|
|
dataset_df = pd.DataFrame(
|
|
[
|
|
{
|
|
'instance_id': '0',
|
|
'env': 'retail',
|
|
'task_index': 0,
|
|
'instruction': 'Test instruction',
|
|
}
|
|
]
|
|
)
|
|
else:
|
|
# Load tasks from the environment
|
|
env = get_env(args.env)
|
|
tasks = env.get_tasks()
|
|
data = []
|
|
for i, task in enumerate(tasks):
|
|
data.append(
|
|
{
|
|
'instance_id': f'{args.env}_{i}',
|
|
'env': args.env,
|
|
'task_index': i,
|
|
'instruction': task.instruction,
|
|
'ground_truth': task.actions, # Or whatever ground truth it provides
|
|
}
|
|
)
|
|
dataset_df = pd.DataFrame(data)
|
|
|
|
metadata = make_metadata(
|
|
llm_config=llm_config,
|
|
dataset_name=f'tau-bench-{args.env}',
|
|
agent_class=args.agent_cls,
|
|
max_iterations=args.max_iterations,
|
|
eval_note=args.eval_note,
|
|
eval_output_dir=args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
dataset = prepare_dataset(
|
|
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
|
|
)
|
|
|
|
run_evaluation(
|
|
dataset=dataset,
|
|
metadata=metadata,
|
|
output_file=output_file,
|
|
num_workers=args.eval_num_workers,
|
|
process_instance_func=process_instance,
|
|
)
|