Files
OpenHands/evaluation/benchmarks/swe_perf/run_infer.py
Robert Brennan b5e00f577c Replace All-Hands-AI references with OpenHands (#11287)
Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Engel Nyst <engel.nyst@gmail.com>
Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
2025-10-26 01:52:45 +02:00

979 lines
37 KiB
Python

import asyncio
import copy
import json
import os
import tempfile
from typing import Any, Literal
import pandas as pd
import toml
from datasets import load_dataset
import openhands.agenthub
from evaluation.benchmarks.swe_perf.binary_patch_utils import (
remove_binary_diffs,
remove_binary_files_from_git,
)
from evaluation.benchmarks.swe_perf.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.benchmarks.swe_perf.resource.swt_bench_constants import (
MAP_REPO_TO_INSTALL,
MAP_VERSION_TO_INSTALL,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
check_maximum_retries_exceeded,
codeact_user_response,
get_default_sandbox_config_for_eval,
get_metrics,
is_fatal_evaluation_error,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
OpenHandsConfig,
get_evaluation_parser,
get_llm_config_arg,
)
from openhands.core.config.condenser_config import NoOpCondenserConfig
from openhands.core.config.utils import get_condenser_config_arg
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.critic import AgentFinishedCritic
from openhands.events.action import CmdRunAction, FileReadAction, MessageAction
from openhands.events.observation import (
CmdOutputObservation,
ErrorObservation,
FileReadObservation,
)
from openhands.events.serialization.event import event_from_dict, event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
ENABLE_LLM_EDITOR = os.environ.get('ENABLE_LLM_EDITOR', 'false').lower() == 'true'
BenchMode = Literal['swe', 'swt', 'swt-ci']
# Global variable to track dataset type
DATASET_TYPE = 'SWE-Perf'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
def _get_sweperf_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo}__{instance.version}'.replace('/', '__')
def get_instruction(instance: pd.Series, metadata: EvalMetadata) -> MessageAction:
workspace_dir_name = _get_sweperf_workspace_dir_name(instance)
# The instruction
instruction = f"""
<uploaded_files>
/workspace/{workspace_dir_name}
</uploaded_files>
I've uploaded a python code repository in the directory {workspace_dir_name}. Consider the following issue description:
<issue_description>
{instance.problem_statement_realistic}
</issue_description>
Can you help me implement the necessary changes to the repository so that the requirements specified in the <issue_description> are met?
I've already taken care of all changes to any of the test files described in the <issue_description>. This means you DON'T have to modify the testing logic or any of the tests in any way!
Also the development Python environment is already set up for you (i.e., all dependencies already installed), so you don't need to install other packages.
Your task is to make the minimal changes to non-test files in the /workspace/{workspace_dir_name} directory to ensure the <issue_description> is satisfied.
Follow these phases to resolve the issue:
## ⚙️ Phase 1: Understand the Problem & Test Reuse
**1.1. Install the package locally:**
```bash
python -m pip install pyinstrument
python -m pip install -e .
```
> Only proceed to README-based install if the above fails.
**1.2. Identify relevant modules and logic:**
* Use test cases mentioned in `<issue_description>` to locate the functions and files involved.
* Focus on potential performance bottlenecks: loops, I/O, locks, cache access, data structures, etc.
**1.3. Run initial benchmark:**
```bash
pytest -rA --durations=0 --disable-warnings -p no:warnings --tb=no <test_case>
```
## 📊 Phase 2: Localization (Hierarchical Bottleneck Detection)
**2.1. Global profiling using `pyinstrument`:**
```bash
pyinstrument -m pytest -rA --durations=0 --disable-warnings --tb=no --continue-on-collection-errors -p no:warnings <test_case>
```
**2.2. Analyze performance stack if necessary:**
* 🔍 **Module level**: Identify hot files and methods.
* 🔬 **Function level**: Focus on top-consuming classes/functions.
* 🧬 **Line level**: Add fine-grained sampling/logging if needed.
**2.3. Output a layered summary** showing where time is spent and why.
## 🧠 Phase 3: Repair (Design Candidate Fixes)
**3.1. Propose multiple optimization ideas:**
* Algorithm refinement
* Data structure improvement
* Parallelism / async
* Caching / batching
**3.2. For each candidate:**
* Describe the idea using pseudocode or `diff`
* Evaluate expected gain vs implementation complexity
---
## 🔬 Phase 4: Patch Validation (Quantitative Benchmarking)
**4.1. Apply each patch separately**
**4.2. Re-run benchmark using the same test case**
**4.3. Record improvements in pytest `call` phase**
**4.4. Build a comparison table:**
| Patch | Call Time (s) | % Improvement | Notes |
| ----- | ------------- | ------------- | ----- |
**4.5. Select the best-performing, low-risk patch**
---
## 📌 Phase 5: Fix Analysis (Explain the Fix)
**5.1.** Clearly describe the **problem**
**5.2.** Identify the **exact location** in the code
**5.3.** Describe **how the test reveals** the problem
**5.4.** State **best practices** relevant to the fix
**5.5.** Explain **how the fix resolves** the issue
---
## 🧩 Phase 6: Fix Implementation
**6.1.** Implement the selected fix in the non-test source files
**6.2.** Ensure the changes are minimal and performance-focused
---
## ✅ Phase 7: Final Verification & Review
**7.1.** Run **full regression tests** to ensure correctness
**7.2.** Re-benchmark performance and compare with base commit `{instance['base_commit']}`
**7.3.** Ensure `call` time is significantly improved in `pytest` output
**7.4.** If gain is limited, consider deeper optimization
**7.5.** Write a concise final report including:
* Bottleneck path
* Fix alternatives considered
* Final solution and metrics
* Code diff summary
## Important ##
1. Please do not optimize specifically for certain test cases, as this may be considered cheating.
2. Delete all files unrelated to optimization, including temporary files, auxiliary test code, and so on.
3. Avoid excessive optimization and unnecessary divergence; if the improvement is not significant, stop promptly to maintain efficiency and focus.
Be thorough in your exploration, testing, and reasoning. It's fine if your thinking process is lengthy - quality and completeness are more important than brevity.
"""
if RUN_WITH_BROWSING:
instruction += (
'<IMPORTANT!>\nYou SHOULD NEVER attempt to browse the web. </IMPORTANT!>\n'
)
if 'image_assets' in instance:
assets = json.loads(instance['image_assets'])
assert 'problem_statement' in assets, (
'problem_statement is required in image_assets'
)
image_urls = assets['problem_statement']
return MessageAction(content=instruction, image_urls=image_urls)
return MessageAction(content=instruction)
def get_instance_docker_image(
instance_id: str,
) -> str:
docker_image_prefix = 'docker.io/betty1202/'
image_name = 'sweb.eval.x86_64.' + instance_id
image_name = image_name.replace(
'__', '_s_'
) # to comply with docker image naming convention
return (docker_image_prefix.rstrip('/') + '/' + image_name).lower()
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> OpenHandsConfig:
base_container_image = get_instance_docker_image(
instance['instance_id'],
)
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/OpenHands/OpenHands if you run into any issues.'
)
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = base_container_image
sandbox_config.enable_auto_lint = True
sandbox_config.use_host_network = False
# Add platform to the sandbox config to solve issue 4401
sandbox_config.platform = 'linux/amd64'
sandbox_config.remote_runtime_resource_factor = get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
)
config = OpenHandsConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
enable_browser=RUN_WITH_BROWSING,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=sandbox_config,
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
)
)
# get 'draft_editor' config if exists
config.set_llm_config(get_llm_config_arg('draft_editor'), 'draft_editor')
agent_config = AgentConfig(
enable_jupyter=False,
enable_browsing=RUN_WITH_BROWSING,
enable_llm_editor=ENABLE_LLM_EDITOR,
enable_mcp=False,
condenser=metadata.condenser_config,
enable_prompt_extensions=False,
)
config.set_agent_config(agent_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
metadata: EvalMetadata,
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_sweperf_workspace_dir_name(instance)
obs: CmdOutputObservation
# Set instance id and git configuration
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc && git config --global core.pager "" && git config --global diff.binary false"""
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to export SWE_INSTANCE_ID and configure git: {str(obs)}',
)
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
)
swe_instance_json_name = 'swe-perf-instance.json'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
json.dump([instance.to_dict()], f)
else:
json.dump([instance], f)
# Copy the file to the desired location
runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
# inject the instance swe entry
entry_script_path = 'instance_swe_entry.sh'
runtime.copy_to(
str(os.path.join(script_dir, f'scripts/setup/{entry_script_path}')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, ErrorObservation):
logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')
action = CmdRunAction(command=f'source /swe_util/{entry_script_path}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to source /swe_util/{entry_script_path}: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git reset --hard')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')
if metadata.details['mode'] == 'swt-ci':
# set up repo
setup_commands = []
if instance['repo'] in MAP_REPO_TO_INSTALL:
setup_commands.append(MAP_REPO_TO_INSTALL[instance['repo']])
# Run pre-install set up if provided
install = MAP_VERSION_TO_INSTALL.get(instance['repo'], {}).get(
instance['version'], []
)
if 'pre_install' in install:
for pre_install in install['pre_install']:
setup_commands.append(pre_install)
if 'install' in install:
setup_commands.append(install['install'])
for command in setup_commands:
action = CmdRunAction(command=command)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
action = CmdRunAction(command='which python')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0 and 'testbed' in obs.content,
f'Expected to find python interpreter from testbed, but got: {str(obs)}',
)
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_sweperf_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to kill it...')
action = CmdRunAction(command='C-c')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to ctrl+z it...')
action = CmdRunAction(command='C-z')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git config --global core.pager ""')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git config --global core.pager "": {str(obs)}',
)
# First check for any git repositories in subdirectories
action = CmdRunAction(command='find . -type d -name .git -not -path "./.git"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to find git repositories: {str(obs)}',
)
git_dirs = [p for p in obs.content.strip().split('\n') if p]
if git_dirs:
# Remove all .git directories in subdirectories
for git_dir in git_dirs:
action = CmdRunAction(command=f'rm -rf "{git_dir}"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove git directory {git_dir}: {str(obs)}',
)
# add all files
action = CmdRunAction(command='git add -A')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git add -A: {str(obs)}',
)
# Remove binary files from git staging
action = CmdRunAction(command=remove_binary_files_from_git())
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove binary files: {str(obs)}',
)
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f'git diff --no-color --cached {instance["base_commit"]} > patch.diff'
)
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
# Read the patch file
action = FileReadAction(path='patch.diff')
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, FileReadObservation):
git_patch = obs.content
break
elif isinstance(obs, ErrorObservation):
# Fall back to cat "patch.diff" to get the patch
assert 'File could not be decoded as utf-8' in obs.content
action = CmdRunAction(command='cat patch.diff')
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation) and obs.exit_code == 0
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
git_patch = obs.content
break
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
else:
logger.info('Failed to get git diff, retrying...')
sleep_if_should_continue(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
sleep_if_should_continue(10)
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')
# Remove binary diffs from the patch
git_patch = remove_binary_diffs(git_patch)
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {'git_patch': git_patch}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
runtime_failure_count: int = 0,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
metadata = copy.deepcopy(metadata)
metadata.details['runtime_failure_count'] = runtime_failure_count
metadata.details['remote_runtime_resource_factor'] = (
config.sandbox.remote_runtime_resource_factor
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance, metadata)
message_action = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=message_action,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if is_fatal_evaluation_error(state.last_error):
raise EvalException('Fatal error detected: ' + state.last_error)
# Get git patch
complete_runtime_fn = complete_runtime
return_val = complete_runtime_fn(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'git_patch': git_patch,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
histories = [event_to_dict(event) for event in state.history]
metrics = get_metrics(state)
# Save the output
instruction = message_action.content
if message_action.image_urls:
instruction += (
'\n\n<image_urls>' + '\n'.join(message_action.image_urls) + '</image_urls>'
)
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
if 'selected_repos' in data:
selected_repos = data['selected_repos']
if isinstance(selected_repos, str):
selected_repos = [selected_repos]
assert isinstance(selected_repos, list)
logger.info(
f'Filtering {selected_repos} tasks from "selected_repos"...'
)
subset = dataset[dataset['repo'].isin(selected_repos)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
skip_ids = os.environ.get('SKIP_IDS', '').split(',')
if len(skip_ids) > 0:
logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...')
return dataset[~dataset[filter_column].isin(skip_ids)]
return dataset
if __name__ == '__main__':
parser = get_evaluation_parser()
parser.add_argument(
'--dataset',
type=str,
default='SWE-Perf/SWE-Perf',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
parser.add_argument(
'--mode',
type=str,
default='swe',
choices=['swe', 'swt', 'swt-ci'],
help="mode to run the evaluation, either 'swe', 'swt', or 'swt-ci'",
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, split=args.split)
swe_perf_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_perf_tests)} tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# Get condenser config from environment variable
condenser_name = os.environ.get('EVAL_CONDENSER')
if condenser_name:
condenser_config = get_condenser_config_arg(condenser_name)
if condenser_config is None:
raise ValueError(
f'Could not find Condenser config: EVAL_CONDENSER={condenser_name}'
)
else:
# If no specific condenser config is provided via env var, default to NoOpCondenser
condenser_config = NoOpCondenserConfig()
logger.debug(
'No Condenser config provided via EVAL_CONDENSER, using NoOpCondenser.'
)
details = {'mode': args.mode}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
condenser_config=condenser_config,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
# Run evaluation in iterative mode:
# If a rollout fails to output AgentFinishAction, we will try again until it succeeds OR total 3 attempts have been made.
ITERATIVE_EVAL_MODE = (
os.environ.get('ITERATIVE_EVAL_MODE', 'false').lower() == 'true'
)
ITERATIVE_EVAL_MODE_MAX_ATTEMPTS = int(
os.environ.get('ITERATIVE_EVAL_MODE_MAX_ATTEMPTS', '3')
)
if not ITERATIVE_EVAL_MODE:
# load the dataset
instances = prepare_dataset(swe_perf_tests, output_file, args.eval_n_limit)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
else:
critic = AgentFinishedCritic()
def get_cur_output_file_path(attempt: int) -> str:
return (
f'{output_file.removesuffix(".jsonl")}.critic_attempt_{attempt}.jsonl'
)
eval_ids = None
for attempt in range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1):
cur_output_file = get_cur_output_file_path(attempt)
logger.info(
f'Running evaluation with critic {critic.__class__.__name__} for attempt {attempt} of {ITERATIVE_EVAL_MODE_MAX_ATTEMPTS}.'
)
# For deterministic eval, we set temperature to 0.1 for (>1) attempt
# so hopefully we get slightly different results
if attempt > 1 and metadata.llm_config.temperature == 0:
logger.info(
f'Detected temperature is 0 for (>1) attempt {attempt}. Setting temperature to 0.1...'
)
metadata.llm_config.temperature = 0.1
# Load instances - at first attempt, we evaluate all instances
# On subsequent attempts, we only evaluate the instances that failed the previous attempt determined by critic
instances = prepare_dataset(
swe_perf_tests, cur_output_file, args.eval_n_limit, eval_ids=eval_ids
)
# Run evaluation - but save them to cur_output_file
logger.info(
f'Evaluating {len(instances)} instances for attempt {attempt}...'
)
run_evaluation(
instances,
metadata,
cur_output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
# When eval is done, we update eval_ids to the instances that failed the current attempt
instances_failed = []
logger.info(
f'Use critic {critic.__class__.__name__} to check {len(instances)} instances for attempt {attempt}...'
)
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
try:
history = [
event_from_dict(event) for event in instance['history']
]
critic_result = critic.evaluate(
history, instance['test_result'].get('git_patch', '')
)
if not critic_result.success:
instances_failed.append(instance['instance_id'])
except Exception as e:
logger.error(
f'Error loading history for instance {instance["instance_id"]}: {e}'
)
instances_failed.append(instance['instance_id'])
logger.info(
f'{len(instances_failed)} instances failed the current attempt {attempt}: {instances_failed}'
)
eval_ids = instances_failed
# If no instances failed, we break
if len(instances_failed) == 0:
break
# Then we should aggregate the results from all attempts into the original output file
# and remove the intermediate files
logger.info(
'Aggregating results from all attempts into the original output file...'
)
fout = open(output_file, 'w')
added_instance_ids = set()
for attempt in reversed(range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1)):
cur_output_file = get_cur_output_file_path(attempt)
if not os.path.exists(cur_output_file):
logger.warning(
f'Intermediate output file {cur_output_file} does not exist. Skipping...'
)
continue
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
# Also make sure git_patch is not empty - otherwise we fall back to previous attempt (empty patch is worse than anything else)
if (
instance['instance_id'] not in added_instance_ids
and instance['test_result'].get('git_patch', '').strip()
):
fout.write(line)
added_instance_ids.add(instance['instance_id'])
logger.info(
f'Aggregated instances from {cur_output_file}. Total instances added so far: {len(added_instance_ids)}'
)
fout.close()
logger.info(
f'Done! Total {len(added_instance_ids)} instances added to {output_file}'
)
# Check if any instances reached maximum retries
check_maximum_retries_exceeded(metadata.eval_output_dir)