Files
OpenHands/enterprise/integrations/solvability/models/summary.py
2025-09-04 15:44:54 -04:00

173 lines
5.8 KiB
Python

from __future__ import annotations
import json
from datetime import datetime
from typing import Any
from integrations.solvability.models.difficulty_level import DifficultyLevel
from integrations.solvability.models.report import SolvabilityReport
from integrations.solvability.prompts import load_prompt
from pydantic import BaseModel, Field
from openhands.llm import LLM
class SolvabilitySummary(BaseModel):
"""Summary of the solvability analysis in human-readable format."""
score: float
"""
Solvability score indicating the likelihood of the issue being solvable.
"""
summary: str
"""
The executive summary content generated by the LLM.
"""
actionable_feedback: str
"""
Actionable feedback content generated by the LLM.
"""
positive_feedback: str
"""
Positive feedback content generated by the LLM, highlighting what is good about the issue.
"""
prompt_tokens: int
"""
Number of prompt tokens used in the API call to generate the summary.
"""
completion_tokens: int
"""
Number of completion tokens used in the API call to generate the summary.
"""
response_latency: float
"""
Response latency of the API call to generate the summary.
"""
created_at: datetime = Field(default_factory=datetime.now)
"""
Datetime when the summary was created.
"""
@staticmethod
def tool_description() -> dict[str, Any]:
"""Get the tool description for the LLM."""
return {
'type': 'function',
'function': {
'name': 'solvability_summary',
'description': 'Generate a human-readable summary of the solvability analysis.',
'parameters': {
'type': 'object',
'properties': {
'summary': {
'type': 'string',
'description': 'A high-level (at most two sentences) summary of the solvability report.',
},
'actionable_feedback': {
'type': 'string',
'description': (
'Bullet list of 1-3 pieces of actionable feedback on how the user can address the lowest scoring relevant features.'
),
},
'positive_feedback': {
'type': 'string',
'description': (
'Bullet list of 1-3 pieces of positive feedback on the issue, highlighting what is good about it.'
),
},
},
'required': ['summary', 'actionable_feedback'],
},
},
}
@staticmethod
def tool_choice() -> dict[str, Any]:
"""Get the tool choice for the LLM."""
return {
'type': 'function',
'function': {
'name': 'solvability_summary',
},
}
@staticmethod
def system_message() -> dict[str, Any]:
"""Get the system message for the LLM."""
return {
'role': 'system',
'content': load_prompt('summary_system_message'),
}
@staticmethod
def user_message(report: SolvabilityReport) -> dict[str, Any]:
"""Get the user message for the LLM."""
return {
'role': 'user',
'content': load_prompt(
'summary_user_message',
report=report.model_dump(),
difficulty_level=DifficultyLevel.from_score(report.score).value[0],
),
}
@staticmethod
def from_report(report: SolvabilityReport, llm: LLM) -> SolvabilitySummary:
"""Create a SolvabilitySummary from a SolvabilityReport."""
import time
start_time = time.time()
response = llm.completion(
messages=[
SolvabilitySummary.system_message(),
SolvabilitySummary.user_message(report),
],
tools=[SolvabilitySummary.tool_description()],
tool_choice=SolvabilitySummary.tool_choice(),
)
response_latency = time.time() - start_time
# Grab the arguments from the forced function call
arguments = json.loads(
response.choices[0].message.tool_calls[0].function.arguments
)
return SolvabilitySummary(
# The score is copied directly from the report
score=report.score,
# Performance and usage metrics are pulled from the response
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
response_latency=response_latency,
# Every other field should be taken from the forced function call
**arguments,
)
def format_as_markdown(self) -> str:
"""Format the summary content as Markdown."""
# Convert score to difficulty level enum
difficulty_level = DifficultyLevel.from_score(self.score)
# Create the main difficulty display
result = f'{difficulty_level.format_display()}\n\n{self.summary}'
# If not easy, show the three features with lowest importance scores
if difficulty_level != DifficultyLevel.EASY:
# Add dropdown with lowest importance features
result += '\n\nYou can make the issue easier to resolve by addressing these concerns in the conversation:\n\n'
result += self.actionable_feedback
# If the difficulty isn't hard, add some positive feedback
if difficulty_level != DifficultyLevel.HARD:
result += '\n\nPositive feedback:\n\n'
result += self.positive_feedback
return result