diff --git a/FMCW_Velocity_RADAR_Waterfall.py b/FMCW_Velocity_RADAR_Waterfall.py
deleted file mode 100644
index 2c76555..0000000
--- a/FMCW_Velocity_RADAR_Waterfall.py
+++ /dev/null
@@ -1,493 +0,0 @@
-#!/usr/bin/env python3
-# Must use Python 3
-# Copyright (C) 2022 Analog Devices, Inc.
-#
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without modification,
-# are permitted provided that the following conditions are met:
-# - Redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer.
-# - Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in
-# the documentation and/or other materials provided with the
-# distribution.
-# - Neither the name of Analog Devices, Inc. nor the names of its
-# contributors may be used to endorse or promote products derived
-# from this software without specific prior written permission.
-# - The use of this software may or may not infringe the patent rights
-# of one or more patent holders. This license does not release you
-# from the requirement that you obtain separate licenses from these
-# patent holders to use this software.
-# - Use of the software either in source or binary form, must be run
-# on or directly connected to an Analog Devices Inc. component.
-#
-# THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-# INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
-# PARTICULAR PURPOSE ARE DISCLAIMED.
-#
-# IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
-# RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
-# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
-# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
-# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-'''FMCW Radar Demo with Phaser (CN0566)
- Jon Kraft, Jan 20 2024'''
-
-# Imports
-import adi
-
-import sys
-import time
-import matplotlib.pyplot as plt
-import numpy as np
-import pyqtgraph as pg
-from PyQt5.QtCore import Qt
-from PyQt5.QtWidgets import *
-from pyqtgraph.Qt import QtCore, QtGui
-
-# Instantiate all the Devices
-rpi_ip = "ip:phaser.local" # IP address of the Raspberry Pi
-sdr_ip = "ip:192.168.2.1" # "192.168.2.1, or pluto.local" # IP address of the Transceiver Block
-my_sdr = adi.ad9361(uri=sdr_ip)
-my_phaser = adi.CN0566(uri=rpi_ip, sdr=my_sdr)
-
-# Initialize both ADAR1000s, set gains to max, and all phases to 0
-my_phaser.configure(device_mode="rx")
-my_phaser.load_gain_cal()
-my_phaser.load_phase_cal()
-for i in range(0, 8):
- my_phaser.set_chan_phase(i, 0)
-
-gain_list = [8, 34, 84, 127, 127, 84, 34, 8] # Blackman taper
-for i in range(0, len(gain_list)):
- my_phaser.set_chan_gain(i, gain_list[i], apply_cal=True)
-
-# Setup Raspberry Pi GPIO states
-try:
- my_phaser._gpios.gpio_tx_sw = 0 # 0 = TX_OUT_2, 1 = TX_OUT_1
- my_phaser._gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=disable PLL and VCO, and set switch to use external LO input)
- my_phaser._gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path, and send LO to LO_OUT)
-except:
- my_phaser.gpios.gpio_tx_sw = 0 # 0 = TX_OUT_2, 1 = TX_OUT_1
- my_phaser.gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=disable PLL and VCO, and set switch to use external LO input)
- my_phaser.gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path, and send LO to LO_OUT)
-
-sample_rate = 0.6e6
-center_freq = 2.1e9
-signal_freq = 100e3
-num_slices = 400 # this sets how much time will be displayed on the waterfall plot
-fft_size = 1024 * 4
-plot_freq = 100e3 # x-axis freq range to plot
-img_array = np.ones((num_slices, fft_size))*(-100)
-
-# Configure SDR Rx
-my_sdr.sample_rate = int(sample_rate)
-my_sdr.rx_lo = int(center_freq) # set this to output_freq - (the freq of the HB100)
-my_sdr.rx_enabled_channels = [0, 1] # enable Rx1 (voltage0) and Rx2 (voltage1)
-my_sdr.rx_buffer_size = int(fft_size)
-my_sdr.gain_control_mode_chan0 = "manual" # manual or slow_attack
-my_sdr.gain_control_mode_chan1 = "manual" # manual or slow_attack
-my_sdr.rx_hardwaregain_chan0 = int(30) # must be between -3 and 70
-my_sdr.rx_hardwaregain_chan1 = int(30) # must be between -3 and 70
-# Configure SDR Tx
-my_sdr.tx_lo = int(center_freq)
-my_sdr.tx_enabled_channels = [0, 1]
-my_sdr.tx_cyclic_buffer = True # must set cyclic buffer to true for the tdd burst mode. Otherwise Tx will turn on and off randomly
-my_sdr.tx_hardwaregain_chan0 = -88 # must be between 0 and -88
-my_sdr.tx_hardwaregain_chan1 = -0 # must be between 0 and -88
-
-# Configure the ADF4159 Rampling PLL
-output_freq = 12.145e9
-BW = 500e6
-num_steps = 500
-ramp_time = 0.5e3 # us
-my_phaser.frequency = int(output_freq / 4) # Output frequency divided by 4
-my_phaser.freq_dev_range = int(
- BW / 4
-) # frequency deviation range in Hz. This is the total freq deviation of the complete freq ramp
-my_phaser.freq_dev_step = int(
- (BW/4) / num_steps
-) # frequency deviation step in Hz. This is fDEV, in Hz. Can be positive or negative
-my_phaser.freq_dev_time = int(
- ramp_time
-) # total time (in us) of the complete frequency ramp
-print("requested freq dev time = ", ramp_time)
-ramp_time = my_phaser.freq_dev_time
-ramp_time_s = ramp_time / 1e6
-print("actual freq dev time = ", ramp_time)
-my_phaser.delay_word = 4095 # 12 bit delay word. 4095*PFD = 40.95 us. For sawtooth ramps, this is also the length of the Ramp_complete signal
-my_phaser.delay_clk = "PFD" # can be 'PFD' or 'PFD*CLK1'
-my_phaser.delay_start_en = 0 # delay start
-my_phaser.ramp_delay_en = 0 # delay between ramps.
-my_phaser.trig_delay_en = 0 # triangle delay
-my_phaser.ramp_mode = "continuous_triangular" # ramp_mode can be: "disabled", "continuous_sawtooth", "continuous_triangular", "single_sawtooth_burst", "single_ramp_burst"
-my_phaser.sing_ful_tri = (
- 0 # full triangle enable/disable -- this is used with the single_ramp_burst mode
-)
-my_phaser.tx_trig_en = 0 # start a ramp with TXdata
-my_phaser.enable = 0 # 0 = PLL enable. Write this last to update all the registers
-
-# Print config
-print(
- """
-CONFIG:
-Sample rate: {sample_rate}MHz
-Num samples: 2^{Nlog2}
-Bandwidth: {BW}MHz
-Ramp time: {ramp_time}ms
-Output frequency: {output_freq}MHz
-IF: {signal_freq}kHz
-""".format(
- sample_rate=sample_rate / 1e6,
- Nlog2=int(np.log2(fft_size)),
- BW=BW / 1e6,
- ramp_time=ramp_time / 1e3,
- output_freq=output_freq / 1e6,
- signal_freq=signal_freq / 1e3,
- )
-)
-
-# Create a sinewave waveform
-fs = int(my_sdr.sample_rate)
-N = int(my_sdr.rx_buffer_size)
-fc = int(signal_freq / (fs / N)) * (fs / N)
-ts = 1 / float(fs)
-t = np.arange(0, N * ts, ts)
-i = np.cos(2 * np.pi * t * fc) * 2 ** 14
-q = np.sin(2 * np.pi * t * fc) * 2 ** 14
-iq = 1 * (i + 1j * q)
-
-# Send data
-my_sdr._ctx.set_timeout(0)
-my_sdr.tx([iq * 0.5, iq]) # only send data to the 2nd channel (that's all we need)
-
-c = 3e8
-default_chirp_bw = 500e6
-N_frame = fft_size
-freq = np.linspace(-fs / 2, fs / 2, int(N_frame))
-slope = BW / ramp_time_s
-dist = (freq - signal_freq) * c / (2 * slope)
-
-plot_dist = False
-
-
-class Window(QMainWindow):
- def __init__(self):
- super().__init__()
- self.setWindowTitle("Interactive FFT")
- self.setGeometry(0, 0, 400, 400) # (x,y, width, height)
- #self.setFixedWidth(600)
- self.setWindowState(QtCore.Qt.WindowMaximized)
- self.num_rows = 12
- self.setWindowFlag(QtCore.Qt.WindowCloseButtonHint, False) #remove the window's close button
- self.UiComponents()
- self.show()
-
- # method for components
- def UiComponents(self):
- widget = QWidget()
-
- global layout, signal_freq
- layout = QGridLayout()
-
- # Control Panel
- control_label = QLabel("PHASER Simple FMCW Radar")
- font = control_label.font()
- font.setPointSize(24)
- control_label.setFont(font)
- font.setPointSize(12)
- control_label.setAlignment(Qt.AlignHCenter) # | Qt.AlignVCenter)
- layout.addWidget(control_label, 0, 0, 1, 2)
-
- # Check boxes
- self.x_axis_check = QCheckBox("Toggle Range/Frequency x-axis")
- font = self.x_axis_check.font()
- font.setPointSize(10)
- self.x_axis_check.setFont(font)
-
- self.x_axis_check.stateChanged.connect(self.change_x_axis)
- layout.addWidget(self.x_axis_check, 2, 0)
-
- # Range resolution
- # Changes with the Chirp BW slider
- self.range_res_label = QLabel(
- "B: %0.2f MHz - Rres: %0.2f m"
- % (default_chirp_bw / 1e6, c / (2 * default_chirp_bw))
- )
- font = self.range_res_label.font()
- font.setPointSize(10)
- self.range_res_label.setFont(font)
- self.range_res_label.setAlignment(Qt.AlignLeft)
- self.range_res_label.setMaximumWidth(200)
- self.range_res_label.setMinimumWidth(100)
- layout.addWidget(self.range_res_label, 4, 1)
-
- # Chirp bandwidth slider
- self.bw_slider = QSlider(Qt.Horizontal)
- self.bw_slider.setMinimum(100)
- self.bw_slider.setMaximum(500)
- self.bw_slider.setValue(int(default_chirp_bw / 1e6))
- self.bw_slider.setTickInterval(50)
- self.bw_slider.setMaximumWidth(200)
- self.bw_slider.setTickPosition(QSlider.TicksBelow)
- self.bw_slider.valueChanged.connect(self.get_range_res)
- layout.addWidget(self.bw_slider, 4, 0)
-
- self.set_bw = QPushButton("Set Chirp Bandwidth")
- self.set_bw.setMaximumWidth(200)
- self.set_bw.pressed.connect(self.set_range_res)
- layout.addWidget(self.set_bw, 5, 0, 1, 1)
-
- self.quit_button = QPushButton("Quit")
- self.quit_button.pressed.connect(self.end_program)
- layout.addWidget(self.quit_button, 30, 0, 4, 4)
-
-
- # waterfall level slider
- self.low_slider = QSlider(Qt.Horizontal)
- self.low_slider.setMinimum(-1000)
- self.low_slider.setMaximum(1000)
- self.low_slider.setValue(-500)
- self.low_slider.setTickInterval(50)
- self.low_slider.setMaximumWidth(200)
- self.low_slider.setTickPosition(QSlider.TicksBelow)
- self.low_slider.valueChanged.connect(self.get_water_levels)
- layout.addWidget(self.low_slider, 8, 0)
-
- self.high_slider = QSlider(Qt.Horizontal)
- self.high_slider.setMinimum(-1000)
- self.high_slider.setMaximum(1000)
- self.high_slider.setValue(500)
- self.high_slider.setTickInterval(50)
- self.high_slider.setMaximumWidth(200)
- self.high_slider.setTickPosition(QSlider.TicksBelow)
- self.high_slider.valueChanged.connect(self.get_water_levels)
- layout.addWidget(self.high_slider, 10, 0)
-
- self.water_label = QLabel("Waterfall Intensity Levels")
- self.water_label.setFont(font)
- self.water_label.setAlignment(Qt.AlignCenter)
- self.water_label.setMinimumWidth(100)
- self.water_label.setMaximumWidth(200)
- layout.addWidget(self.water_label, 7, 0,1,1)
- self.low_label = QLabel("LOW LEVEL: %0.0f" % (self.low_slider.value()))
- self.low_label.setFont(font)
- self.low_label.setAlignment(Qt.AlignLeft)
- self.low_label.setMinimumWidth(100)
- self.low_label.setMaximumWidth(200)
- layout.addWidget(self.low_label, 8, 1)
- self.high_label = QLabel("HIGH LEVEL: %0.0f" % (self.high_slider.value()))
- self.high_label.setFont(font)
- self.high_label.setAlignment(Qt.AlignLeft)
- self.high_label.setMinimumWidth(100)
- self.high_label.setMaximumWidth(200)
- layout.addWidget(self.high_label, 10, 1)
-
- self.steer_slider = QSlider(Qt.Horizontal)
- self.steer_slider.setMinimum(-80)
- self.steer_slider.setMaximum(80)
- self.steer_slider.setValue(0)
- self.steer_slider.setTickInterval(20)
- self.steer_slider.setMaximumWidth(200)
- self.steer_slider.setTickPosition(QSlider.TicksBelow)
- self.steer_slider.valueChanged.connect(self.get_steer_angle)
- layout.addWidget(self.steer_slider, 14, 0)
- self.steer_title = QLabel("Receive Steering Angle")
- self.steer_title.setFont(font)
- self.steer_title.setAlignment(Qt.AlignCenter)
- self.steer_title.setMinimumWidth(100)
- self.steer_title.setMaximumWidth(200)
- layout.addWidget(self.steer_title, 13, 0)
- self.steer_label = QLabel("%0.0f DEG" % (self.steer_slider.value()))
- self.steer_label.setFont(font)
- self.steer_label.setAlignment(Qt.AlignLeft)
- self.steer_label.setMinimumWidth(100)
- self.steer_label.setMaximumWidth(200)
- layout.addWidget(self.steer_label, 14, 1,1,2)
-
- # FFT plot
- self.fft_plot = pg.plot()
- self.fft_plot.setMinimumWidth(600)
- self.fft_curve = self.fft_plot.plot(freq, pen={'color':'y', 'width':2})
- title_style = {"size": "20pt"}
- label_style = {"color": "#FFF", "font-size": "14pt"}
- self.fft_plot.setLabel("bottom", text="Frequency", units="Hz", **label_style)
- self.fft_plot.setLabel("left", text="Magnitude", units="dB", **label_style)
- self.fft_plot.setTitle("Received Signal - Frequency Spectrum", **title_style)
- layout.addWidget(self.fft_plot, 0, 2, self.num_rows, 1)
- self.fft_plot.setYRange(-60, 0)
- self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
-
- # Waterfall plot
- self.waterfall = pg.PlotWidget()
- self.imageitem = pg.ImageItem()
- self.waterfall.addItem(self.imageitem)
- # Use a viridis colormap
- pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
- color = np.array([[68, 1, 84,255], [59, 82, 139,255], [33, 145, 140,255], [94, 201, 98,255], [253, 231, 37,255]], dtype=np.ubyte)
- lut = pg.ColorMap(pos, color).getLookupTable(0.0, 1.0, 256)
- self.imageitem.setLookupTable(lut)
- self.imageitem.setLevels([0,1])
- # self.imageitem.scale(0.35, sample_rate / (N)) # this is deprecated -- we have to use setTransform instead
- tr = QtGui.QTransform()
- tr.translate(0,-sample_rate/2)
- tr.scale(0.35, sample_rate / (N))
- self.imageitem.setTransform(tr)
- zoom_freq = 35e3
- self.waterfall.setRange(yRange=(signal_freq, signal_freq + zoom_freq))
- self.waterfall.setTitle("Waterfall Spectrum", **title_style)
- self.waterfall.setLabel("left", "Frequency", units="Hz", **label_style)
- self.waterfall.setLabel("bottom", "Time", units="sec", **label_style)
- layout.addWidget(self.waterfall, 0 + self.num_rows + 1, 2, self.num_rows, 1)
- self.img_array = np.ones((num_slices, fft_size))*(-100)
-
- widget.setLayout(layout)
- # setting this widget as central widget of the main window
- self.setCentralWidget(widget)
-
- def get_range_res(self):
- """ Updates the slider bar label with RF bandwidth and range resolution
- Returns:
- None
- """
- bw = self.bw_slider.value() * 1e6
- range_res = c / (2 * bw)
- self.range_res_label.setText(
- "B: %0.2f MHz - Rres: %0.2f m"
- % (bw / 1e6, c / (2 * bw))
- )
-
- def get_water_levels(self):
- """ Updates the waterfall intensity levels
- Returns:
- None
- """
- if self.low_slider.value() > self.high_slider.value():
- self.low_slider.setValue(self.high_slider.value())
- self.low_label.setText("LOW LEVEL: %0.0f" % (self.low_slider.value()))
- self.high_label.setText("HIGH LEVEL: %0.0f" % (self.high_slider.value()))
-
- def get_steer_angle(self):
- """ Updates the steering angle readout
- Returns:
- None
- """
- self.steer_label.setText("%0.0f DEG" % (self.steer_slider.value()))
- phase_delta = (
- 2
- * 3.14159
- * 10.25e9
- * 0.014
- * np.sin(np.radians(self.steer_slider.value()))
- / (3e8)
- )
- my_phaser.set_beam_phase_diff(np.degrees(phase_delta))
-
- def set_range_res(self):
- """ Sets the Chirp bandwidth
- Returns:
- None
- """
- global dist, slope, signal_freq, plot_freq
- bw = self.bw_slider.value() * 1e6
- slope = bw / ramp_time_s
- dist = (freq - signal_freq) * c / (2 * slope)
- if self.x_axis_check.isChecked() == True:
- plot_dist = True
- range_x = (plot_freq) * c / (2 * slope)
- self.fft_plot.setXRange(0, range_x)
- else:
- plot_dist = False
- self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
- my_phaser.freq_dev_range = int(bw / 4) # frequency deviation range in Hz
- my_phaser.enable = 0
-
- def end_program(self):
- """ Gracefully shutsdown the program and Pluto
- Returns:
- None
- """
- my_sdr.tx_destroy_buffer()
- self.close()
-
- def change_x_axis(self, state):
- """ Toggles between showing frequency and range for the x-axis
- Args:
- state (QtCore.Qt.Checked) : State of check box
- Returns:
- None
- """
- global plot_dist, slope, signal_freq, plot_freq
- plot_state = win.fft_plot.getViewBox().state
- if state == QtCore.Qt.Checked:
- plot_dist = True
- range_x = (plot_freq) * c / (2 * slope)
- self.fft_plot.setXRange(0, range_x)
- else:
- plot_dist = False
- self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
-
-
-# create pyqt5 app
-App = QApplication(sys.argv)
-
-# create the instance of our Window
-win = Window()
-index = 0
-
-
-def update():
- """ Updates the FFT in the window
- Returns:
- None
- """
- global index, plot_dist, freq, dist, s_vel
- label_style = {"color": "#FFF", "font-size": "14pt"}
-
- data = my_sdr.rx()
- data = data[0] + data[1]
- win_funct = np.blackman(len(data))
- y = data * win_funct
- sp = np.absolute(np.fft.fft(y))
- sp = np.fft.fftshift(sp)
- s_mag = np.abs(sp) / np.sum(win_funct)
- s_mag = np.maximum(s_mag, 10 ** (-15))
- s_dbfs = 20 * np.log10(s_mag / (2 ** 11))
- index_100 = int(N_frame/2+N_frame*signal_freq/sample_rate)
- vel_range = N_frame-index_100-1
- s_vel = np.zeros(N_frame)
- for i in range(vel_range):
- index_high = index_100 + i
- index_low = index_100 - i
- s_vel[i] = 0.03/4 * (s_dbfs[index_high]-s_dbfs[index_low])*1000
- s_vel = np.ones(N_frame)*abs(s_vel)
-
-
-
- if plot_dist:
- win.fft_curve.setData(dist, s_dbfs)
- win.fft_plot.setLabel("bottom", text="Distance", units="m", **label_style)
- else:
- win.fft_curve.setData(freq, s_vel)
- win.fft_plot.setLabel("bottom", text="Frequency", units="Hz", **label_style)
-
- win.img_array = np.roll(win.img_array, 1, axis=0)
- win.img_array[0] = s_vel
- win.imageitem.setLevels([win.low_slider.value(), win.high_slider.value()])
- win.imageitem.setImage(win.img_array, autoLevels=False)
-
- if index == 1:
- win.fft_plot.enableAutoRange("xy", False)
- index = index + 1
-
-
-timer = QtCore.QTimer()
-timer.timeout.connect(update)
-timer.start(0)
-
-# start the app
-sys.exit(App.exec())
-