mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 12:48:03 -05:00
Add inverted_pendulum_lqr_control (#635)
* Add inverted_pendulum_lqr_control * reorganize document of inverted pendulum control module * Refactor inverted_pendulum_lqr_control.py * Add doccument for inverted pendulum control * Corrected inverted pedulum LQR control doccument * Refactor inverted pendulum control by mpc and lqr * Add unit test for inverted_pendulum_lqr_control.py
This commit is contained in:
192
Control/inverted_pendulum/inverted_pendulum_lqr_control.py
Normal file
192
Control/inverted_pendulum/inverted_pendulum_lqr_control.py
Normal file
@@ -0,0 +1,192 @@
|
||||
"""
|
||||
Inverted Pendulum LQR control
|
||||
author: Trung Kien - letrungkien.k53.hut@gmail.com
|
||||
"""
|
||||
|
||||
import math
|
||||
import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from numpy.linalg import inv, eig
|
||||
|
||||
# Model parameters
|
||||
|
||||
l_bar = 2.0 # length of bar
|
||||
M = 1.0 # [kg]
|
||||
m = 0.3 # [kg]
|
||||
g = 9.8 # [m/s^2]
|
||||
|
||||
nx = 4 # number of state
|
||||
nu = 1 # number of input
|
||||
Q = np.diag([0.0, 1.0, 1.0, 0.0]) # state cost matrix
|
||||
R = np.diag([0.01]) # input cost matrix
|
||||
|
||||
delta_t = 0.1 # time tick [s]
|
||||
sim_time = 5.0 # simulation time [s]
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def main():
|
||||
x0 = np.array([
|
||||
[0.0],
|
||||
[0.0],
|
||||
[0.3],
|
||||
[0.0]
|
||||
])
|
||||
|
||||
x = np.copy(x0)
|
||||
time = 0.0
|
||||
|
||||
while sim_time > time:
|
||||
time += delta_t
|
||||
|
||||
# calc control input
|
||||
u = lqr_control(x)
|
||||
|
||||
# simulate inverted pendulum cart
|
||||
x = simulation(x, u)
|
||||
|
||||
if show_animation:
|
||||
plt.clf()
|
||||
px = float(x[0])
|
||||
theta = float(x[2])
|
||||
plot_cart(px, theta)
|
||||
plt.xlim([-5.0, 2.0])
|
||||
plt.pause(0.001)
|
||||
|
||||
print("Finish")
|
||||
print(f"x={float(x[0]):.2f} [m] , theta={math.degrees(x[2]):.2f} [deg]")
|
||||
if show_animation:
|
||||
plt.show()
|
||||
|
||||
|
||||
def simulation(x, u):
|
||||
A, B = get_model_matrix()
|
||||
x = A @ x + B @ u
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def solve_DARE(A, B, Q, R, maxiter=150, eps=0.01):
|
||||
"""
|
||||
Solve a discrete time_Algebraic Riccati equation (DARE)
|
||||
"""
|
||||
P = Q
|
||||
|
||||
for i in range(maxiter):
|
||||
Pn = A.T @ P @ A - A.T @ P @ B @ \
|
||||
inv(R + B.T @ P @ B) @ B.T @ P @ A + Q
|
||||
if (abs(Pn - P)).max() < eps:
|
||||
break
|
||||
P = Pn
|
||||
|
||||
return Pn
|
||||
|
||||
|
||||
def dlqr(A, B, Q, R):
|
||||
"""
|
||||
Solve the discrete time lqr controller.
|
||||
x[k+1] = A x[k] + B u[k]
|
||||
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
|
||||
# ref Bertsekas, p.151
|
||||
"""
|
||||
|
||||
# first, try to solve the ricatti equation
|
||||
P = solve_DARE(A, B, Q, R)
|
||||
|
||||
# compute the LQR gain
|
||||
K = inv(B.T @ P @ B + R) @ (B.T @ P @ A)
|
||||
|
||||
eigVals, eigVecs = eig(A - B @ K)
|
||||
return K, P, eigVals
|
||||
|
||||
|
||||
def lqr_control(x):
|
||||
A, B = get_model_matrix()
|
||||
start = time.time()
|
||||
K, _, _ = dlqr(A, B, Q, R)
|
||||
u = -K @ x
|
||||
elapsed_time = time.time() - start
|
||||
print(f"calc time:{elapsed_time:.6f} [sec]")
|
||||
return u
|
||||
|
||||
|
||||
def get_numpy_array_from_matrix(x):
|
||||
"""
|
||||
get build-in list from matrix
|
||||
"""
|
||||
return np.array(x).flatten()
|
||||
|
||||
|
||||
def get_model_matrix():
|
||||
A = np.array([
|
||||
[0.0, 1.0, 0.0, 0.0],
|
||||
[0.0, 0.0, m * g / M, 0.0],
|
||||
[0.0, 0.0, 0.0, 1.0],
|
||||
[0.0, 0.0, g * (M + m) / (l_bar * M), 0.0]
|
||||
])
|
||||
A = np.eye(nx) + delta_t * A
|
||||
|
||||
B = np.array([
|
||||
[0.0],
|
||||
[1.0 / M],
|
||||
[0.0],
|
||||
[1.0 / (l_bar * M)]
|
||||
])
|
||||
B = delta_t * B
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
def flatten(a):
|
||||
return np.array(a).flatten()
|
||||
|
||||
|
||||
def plot_cart(xt, theta):
|
||||
cart_w = 1.0
|
||||
cart_h = 0.5
|
||||
radius = 0.1
|
||||
|
||||
cx = np.array([-cart_w / 2.0, cart_w / 2.0, cart_w /
|
||||
2.0, -cart_w / 2.0, -cart_w / 2.0])
|
||||
cy = np.array([0.0, 0.0, cart_h, cart_h, 0.0])
|
||||
cy += radius * 2.0
|
||||
|
||||
cx = cx + xt
|
||||
|
||||
bx = np.array([0.0, l_bar * math.sin(-theta)])
|
||||
bx += xt
|
||||
by = np.array([cart_h, l_bar * math.cos(-theta) + cart_h])
|
||||
by += radius * 2.0
|
||||
|
||||
angles = np.arange(0.0, math.pi * 2.0, math.radians(3.0))
|
||||
ox = np.array([radius * math.cos(a) for a in angles])
|
||||
oy = np.array([radius * math.sin(a) for a in angles])
|
||||
|
||||
rwx = np.copy(ox) + cart_w / 4.0 + xt
|
||||
rwy = np.copy(oy) + radius
|
||||
lwx = np.copy(ox) - cart_w / 4.0 + xt
|
||||
lwy = np.copy(oy) + radius
|
||||
|
||||
wx = np.copy(ox) + bx[-1]
|
||||
wy = np.copy(oy) + by[-1]
|
||||
|
||||
plt.plot(flatten(cx), flatten(cy), "-b")
|
||||
plt.plot(flatten(bx), flatten(by), "-k")
|
||||
plt.plot(flatten(rwx), flatten(rwy), "-k")
|
||||
plt.plot(flatten(lwx), flatten(lwy), "-k")
|
||||
plt.plot(flatten(wx), flatten(wy), "-k")
|
||||
plt.title(f"x: {xt:.2f} , theta: {math.degrees(theta):.2f}")
|
||||
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect(
|
||||
'key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
|
||||
plt.axis("equal")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
187
Control/inverted_pendulum/inverted_pendulum_mpc_control.py
Normal file
187
Control/inverted_pendulum/inverted_pendulum_mpc_control.py
Normal file
@@ -0,0 +1,187 @@
|
||||
"""
|
||||
Inverted Pendulum MPC control
|
||||
author: Atsushi Sakai
|
||||
"""
|
||||
|
||||
import math
|
||||
import time
|
||||
|
||||
import cvxpy
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# Model parameters
|
||||
|
||||
l_bar = 2.0 # length of bar
|
||||
M = 1.0 # [kg]
|
||||
m = 0.3 # [kg]
|
||||
g = 9.8 # [m/s^2]
|
||||
|
||||
nx = 4 # number of state
|
||||
nu = 1 # number of input
|
||||
Q = np.diag([0.0, 1.0, 1.0, 0.0]) # state cost matrix
|
||||
R = np.diag([0.01]) # input cost matrix
|
||||
|
||||
T = 30 # Horizon length
|
||||
delta_t = 0.1 # time tick
|
||||
sim_time = 5.0 # simulation time [s]
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def main():
|
||||
x0 = np.array([
|
||||
[0.0],
|
||||
[0.0],
|
||||
[0.3],
|
||||
[0.0]
|
||||
])
|
||||
|
||||
x = np.copy(x0)
|
||||
time = 0.0
|
||||
|
||||
while sim_time > time:
|
||||
time += delta_t
|
||||
|
||||
# calc control input
|
||||
opt_x, opt_delta_x, opt_theta, opt_delta_theta, opt_input = \
|
||||
mpc_control(x)
|
||||
|
||||
# get input
|
||||
u = opt_input[0]
|
||||
|
||||
# simulate inverted pendulum cart
|
||||
x = simulation(x, u)
|
||||
|
||||
if show_animation:
|
||||
plt.clf()
|
||||
px = float(x[0])
|
||||
theta = float(x[2])
|
||||
plot_cart(px, theta)
|
||||
plt.xlim([-5.0, 2.0])
|
||||
plt.pause(0.001)
|
||||
|
||||
print("Finish")
|
||||
print(f"x={float(x[0]):.2f} [m] , theta={math.degrees(x[2]):.2f} [deg]")
|
||||
if show_animation:
|
||||
plt.show()
|
||||
|
||||
|
||||
def simulation(x, u):
|
||||
A, B = get_model_matrix()
|
||||
x = np.dot(A, x) + np.dot(B, u)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def mpc_control(x0):
|
||||
x = cvxpy.Variable((nx, T + 1))
|
||||
u = cvxpy.Variable((nu, T))
|
||||
|
||||
A, B = get_model_matrix()
|
||||
|
||||
cost = 0.0
|
||||
constr = []
|
||||
for t in range(T):
|
||||
cost += cvxpy.quad_form(x[:, t + 1], Q)
|
||||
cost += cvxpy.quad_form(u[:, t], R)
|
||||
constr += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t]]
|
||||
|
||||
constr += [x[:, 0] == x0[:, 0]]
|
||||
prob = cvxpy.Problem(cvxpy.Minimize(cost), constr)
|
||||
|
||||
start = time.time()
|
||||
prob.solve(verbose=False)
|
||||
elapsed_time = time.time() - start
|
||||
print(f"calc time:{elapsed_time:.6f} [sec]")
|
||||
|
||||
if prob.status == cvxpy.OPTIMAL:
|
||||
ox = get_numpy_array_from_matrix(x.value[0, :])
|
||||
dx = get_numpy_array_from_matrix(x.value[1, :])
|
||||
theta = get_numpy_array_from_matrix(x.value[2, :])
|
||||
d_theta = get_numpy_array_from_matrix(x.value[3, :])
|
||||
|
||||
ou = get_numpy_array_from_matrix(u.value[0, :])
|
||||
else:
|
||||
ox, dx, theta, d_theta, ou = None, None, None, None, None
|
||||
|
||||
return ox, dx, theta, d_theta, ou
|
||||
|
||||
|
||||
def get_numpy_array_from_matrix(x):
|
||||
"""
|
||||
get build-in list from matrix
|
||||
"""
|
||||
return np.array(x).flatten()
|
||||
|
||||
|
||||
def get_model_matrix():
|
||||
A = np.array([
|
||||
[0.0, 1.0, 0.0, 0.0],
|
||||
[0.0, 0.0, m * g / M, 0.0],
|
||||
[0.0, 0.0, 0.0, 1.0],
|
||||
[0.0, 0.0, g * (M + m) / (l_bar * M), 0.0]
|
||||
])
|
||||
A = np.eye(nx) + delta_t * A
|
||||
|
||||
B = np.array([
|
||||
[0.0],
|
||||
[1.0 / M],
|
||||
[0.0],
|
||||
[1.0 / (l_bar * M)]
|
||||
])
|
||||
B = delta_t * B
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
def flatten(a):
|
||||
return np.array(a).flatten()
|
||||
|
||||
|
||||
def plot_cart(xt, theta):
|
||||
cart_w = 1.0
|
||||
cart_h = 0.5
|
||||
radius = 0.1
|
||||
|
||||
cx = np.array([-cart_w / 2.0, cart_w / 2.0, cart_w /
|
||||
2.0, -cart_w / 2.0, -cart_w / 2.0])
|
||||
cy = np.array([0.0, 0.0, cart_h, cart_h, 0.0])
|
||||
cy += radius * 2.0
|
||||
|
||||
cx = cx + xt
|
||||
|
||||
bx = np.array([0.0, l_bar * math.sin(-theta)])
|
||||
bx += xt
|
||||
by = np.array([cart_h, l_bar * math.cos(-theta) + cart_h])
|
||||
by += radius * 2.0
|
||||
|
||||
angles = np.arange(0.0, math.pi * 2.0, math.radians(3.0))
|
||||
ox = np.array([radius * math.cos(a) for a in angles])
|
||||
oy = np.array([radius * math.sin(a) for a in angles])
|
||||
|
||||
rwx = np.copy(ox) + cart_w / 4.0 + xt
|
||||
rwy = np.copy(oy) + radius
|
||||
lwx = np.copy(ox) - cart_w / 4.0 + xt
|
||||
lwy = np.copy(oy) + radius
|
||||
|
||||
wx = np.copy(ox) + bx[-1]
|
||||
wy = np.copy(oy) + by[-1]
|
||||
|
||||
plt.plot(flatten(cx), flatten(cy), "-b")
|
||||
plt.plot(flatten(bx), flatten(by), "-k")
|
||||
plt.plot(flatten(rwx), flatten(rwy), "-k")
|
||||
plt.plot(flatten(lwx), flatten(lwy), "-k")
|
||||
plt.plot(flatten(wx), flatten(wy), "-k")
|
||||
plt.title(f"x: {xt:.2f} , theta: {math.degrees(theta):.2f}")
|
||||
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect(
|
||||
'key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
|
||||
plt.axis("equal")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user