Add inverted_pendulum_lqr_control (#635)

* Add inverted_pendulum_lqr_control

* reorganize document of inverted pendulum control module

* Refactor inverted_pendulum_lqr_control.py

* Add doccument for inverted pendulum control

* Corrected inverted pedulum LQR control doccument

* Refactor inverted pendulum control by mpc and lqr

* Add unit test for inverted_pendulum_lqr_control.py
This commit is contained in:
Trung Kien
2022-01-29 14:16:34 +07:00
committed by GitHub
parent 2c245d9d81
commit 040e12dbcb
8 changed files with 328 additions and 23 deletions

View File

@@ -3,6 +3,7 @@
Control
=================
.. include:: inverted_pendulum_mpc_control/inverted_pendulum_mpc_control.rst
.. include:: inverted_pendulum_control/inverted_pendulum_control.rst
.. include:: move_to_a_pose_control/move_to_a_pose_control.rst

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

View File

@@ -0,0 +1,97 @@
Inverted Pendulum Control
-----------------------------
An inverted pendulum on a cart consists of a mass :math:`m` at the top of a pole of length :math:`l` pivoted on a
horizontally moving base as shown in the adjacent.
The objective of the control system is to balance the inverted pendulum by applying a force to the cart that the pendulum is attached to.
Modeling
~~~~~~~~~~~~
.. image:: inverted_pendulum_control/inverted-pendulum.png
:align: center
- :math:`M`: mass of the cart
- :math:`m`: mass of the load on the top of the rod
- :math:`l`: length of the rod
- :math:`u`: force applied to the cart
- :math:`x`: cart position coordinate
- :math:`\theta`: pendulum angle from vertical
Using Lagrange's equations:
.. math::
& (M + m)\ddot{x} - ml\ddot{\theta}cos{\theta} + ml\dot{\theta^2}\sin{\theta} = u \\
& l\ddot{\theta} - g\sin{\theta} = \ddot{x}\cos{\theta}
See this `link <https://en.wikipedia.org/wiki/Inverted_pendulum#From_Lagrange's_equations>`__ for more details.
So
.. math::
& \ddot{x} = \frac{m(gcos{\theta} - \dot{\theta}^2l)sin{\theta} + u}{M + m - mcos^2{\theta}} \\
& \ddot{\theta} = \frac{g(M + m)sin{\theta} - \dot{\theta}^2lmsin{\theta}cos{\theta} + ucos{\theta}}{l(M + m - mcos^2{\theta})}
Linearlied model when :math:`\theta` small, :math:`cos{\theta} \approx 1`, :math:`sin{\theta} \approx \theta`, :math:`\dot{\theta}^2 \approx 0`.
.. math::
& \ddot{x} = \frac{gm}{M}\theta + \frac{1}{M}u\\
& \ddot{\theta} = \frac{g(M + m)}{Ml}\theta + \frac{1}{Ml}u
State space:
.. math::
& \dot{x} = Ax + Bu \\
& y = Cx + Du
where
.. math::
& x = [x, \dot{x}, \theta,\dot{\theta}]\\
& A = \begin{bmatrix} 0 & 1 & 0 & 0\\0 & 0 & \frac{gm}{M} & 0\\0 & 0 & 0 & 1\\0 & 0 & \frac{g(M + m)}{Ml} & 0 \end{bmatrix}\\
& B = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{1}{Ml} \end{bmatrix}
If control only \theta
.. math::
& C = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}\\
& D = [0]
If control x and \theta
.. math::
& C = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & 0 & 1 & 0 \end{bmatrix}\\
& D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
LQR control
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The LQR cotroller minimize this cost function defined as:
.. math:: J = x^T Q x + u^T R u
the feedback control law that minimizes the value of the cost is:
.. math:: u = -K x
where:
.. math:: K = (B^T P B + R)^{-1} B^T P A
and :math:`P` is the unique positive definite solution to the discrete time `algebraic Riccati equation <https://en.wikipedia.org/wiki/Inverted_pendulum#From_Lagrange's_equations>`__ (DARE):
.. math:: P = A^T P A - A^T P B ( R + B^T P B )^{-1} B^T P A + Q
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Control/InvertedPendulumCart/animation_lqr.gif
MPC control
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MPC cotroller minimize this cost function defined as:
.. math:: J = x^T Q x + u^T R u
subject to:
- Linearlied Inverted Pendulum model
- Initial state
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Control/InvertedPendulumCart/animation.gif

View File

@@ -1,6 +0,0 @@
Inverted Pendulum MPC Control
-----------------------------
Bipedal Walking with modifying designated footsteps
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Control/InvertedPendulumCart/animation.gif