Fix reeds shepp path issue (#529)

* code clean up

* code clean up

* code clean up

* code clean up

* fix length handling issues
This commit is contained in:
Atsushi Sakai
2021-07-17 18:28:26 +09:00
committed by GitHub
parent 177f04618c
commit 2c3896879b
2 changed files with 148 additions and 175 deletions

View File

@@ -14,28 +14,29 @@ show_animation = True
class Path: class Path:
"""
Path data container
"""
def __init__(self): def __init__(self):
# course segment length (negative value is backward segment)
self.lengths = [] self.lengths = []
# course segment type char ("S": straight, "L": left, "R": right)
self.ctypes = [] self.ctypes = []
self.L = 0.0 self.L = 0.0 # Total lengths of the path
self.x = [] self.x = [] # x positions
self.y = [] self.y = [] # y positions
self.yaw = [] self.yaw = [] # orientations [rad]
self.directions = [] self.directions = [] # directions (1:forward, -1:backward)
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
""" if isinstance(x, list):
Plot arrow
"""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw): for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw) plot_arrow(ix, iy, iyaw)
else: else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
fc=fc, ec=ec, head_width=width, head_length=width) ec=ec, head_width=width, head_length=width)
plt.plot(x, y) plt.plot(x, y)
@@ -68,35 +69,35 @@ def straight_left_straight(x, y, phi):
return False, 0.0, 0.0, 0.0 return False, 0.0, 0.0, 0.0
def set_path(paths, lengths, ctypes): def set_path(paths, lengths, ctypes, step_size):
path = Path() path = Path()
path.ctypes = ctypes path.ctypes = ctypes
path.lengths = lengths path.lengths = lengths
path.L = sum(np.abs(lengths))
# check same path exist # check same path exist
for tpath in paths: for i_path in paths:
typeissame = (tpath.ctypes == path.ctypes) type_is_same = (i_path.ctypes == path.ctypes)
if typeissame: length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size
if sum(np.abs(tpath.lengths)) - sum(np.abs(path.lengths)) <= 0.01: if type_is_same and length_is_close:
return paths # not insert path return paths # same path found, so do not insert path
path.L = sum([abs(i) for i in lengths]) # check path is long enough
if path.L <= step_size:
# Base.Test.@test path.L >= 0.01 return paths # too short, so do not insert path
if path.L >= 0.01:
paths.append(path)
paths.append(path)
return paths return paths
def straight_curve_straight(x, y, phi, paths): def straight_curve_straight(x, y, phi, paths, step_size):
flag, t, u, v = straight_left_straight(x, y, phi) flag, t, u, v = straight_left_straight(x, y, phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"]) paths = set_path(paths, [t, u, v], ["S", "L", "S"], step_size)
flag, t, u, v = straight_left_straight(x, -y, -phi) flag, t, u, v = straight_left_straight(x, -y, -phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"]) paths = set_path(paths, [t, u, v], ["S", "R", "S"], step_size)
return paths return paths
@@ -131,22 +132,22 @@ def left_right_left(x, y, phi):
return False, 0.0, 0.0, 0.0 return False, 0.0, 0.0, 0.0
def curve_curve_curve(x, y, phi, paths): def curve_curve_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_right_left(x, y, phi) flag, t, u, v = left_right_left(x, y, phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"]) paths = set_path(paths, [t, u, v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-x, y, -phi) flag, t, u, v = left_right_left(-x, y, -phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"]) paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(x, -y, -phi) flag, t, u, v = left_right_left(x, -y, -phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"]) paths = set_path(paths, [t, u, v], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-x, -y, phi) flag, t, u, v = left_right_left(-x, -y, phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"]) paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"], step_size)
# backwards # backwards
xb = x * math.cos(phi) + y * math.sin(phi) xb = x * math.cos(phi) + y * math.sin(phi)
@@ -154,55 +155,55 @@ def curve_curve_curve(x, y, phi, paths):
flag, t, u, v = left_right_left(xb, yb, phi) flag, t, u, v = left_right_left(xb, yb, phi)
if flag: if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"]) paths = set_path(paths, [v, u, t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-xb, yb, -phi) flag, t, u, v = left_right_left(-xb, yb, -phi)
if flag: if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"]) paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(xb, -yb, -phi) flag, t, u, v = left_right_left(xb, -yb, -phi)
if flag: if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"]) paths = set_path(paths, [v, u, t], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-xb, -yb, phi) flag, t, u, v = left_right_left(-xb, -yb, phi)
if flag: if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"]) paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"], step_size)
return paths return paths
def curve_straight_curve(x, y, phi, paths): def curve_straight_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_straight_left(x, y, phi) flag, t, u, v = left_straight_left(x, y, phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "L"]) paths = set_path(paths, [t, u, v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(-x, y, -phi) flag, t, u, v = left_straight_left(-x, y, -phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"]) paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(x, -y, -phi) flag, t, u, v = left_straight_left(x, -y, -phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "R"]) paths = set_path(paths, [t, u, v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_left(-x, -y, phi) flag, t, u, v = left_straight_left(-x, -y, phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"]) paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, y, phi) flag, t, u, v = left_straight_right(x, y, phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "R"]) paths = set_path(paths, [t, u, v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(-x, y, -phi) flag, t, u, v = left_straight_right(-x, y, -phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"]) paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, -y, -phi) flag, t, u, v = left_straight_right(x, -y, -phi)
if flag: if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "L"]) paths = set_path(paths, [t, u, v], ["R", "S", "L"], step_size)
flag, t, u, v = left_straight_right(-x, -y, phi) flag, t, u, v = left_straight_right(-x, -y, phi)
if flag: if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"]) paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"], step_size)
return paths return paths
@@ -222,7 +223,7 @@ def left_straight_right(x, y, phi):
return False, 0.0, 0.0, 0.0 return False, 0.0, 0.0, 0.0
def generate_path(q0, q1, max_curvature): def generate_path(q0, q1, max_curvature, step_size):
dx = q1[0] - q0[0] dx = q1[0] - q0[0]
dy = q1[1] - q0[1] dy = q1[1] - q0[1]
dth = q1[2] - q0[2] dth = q1[2] - q0[2]
@@ -232,98 +233,70 @@ def generate_path(q0, q1, max_curvature):
y = (-s * dx + c * dy) * max_curvature y = (-s * dx + c * dy) * max_curvature
paths = [] paths = []
paths = straight_curve_straight(x, y, dth, paths) paths = straight_curve_straight(x, y, dth, paths, step_size)
paths = curve_straight_curve(x, y, dth, paths) paths = curve_straight_curve(x, y, dth, paths, step_size)
paths = curve_curve_curve(x, y, dth, paths) paths = curve_curve_curve(x, y, dth, paths, step_size)
return paths return paths
def interpolate(ind, length, mode, max_curvature, origin_x, origin_y, origin_yaw, path_x, path_y, path_yaw, directions): def calc_interpolate_dists_list(lengths, step_size):
interpolate_dists_list = []
for length in lengths:
d_dist = step_size if length >= 0.0 else -step_size
interp_dists = np.arange(0.0, length, d_dist)
interp_dists = np.append(interp_dists, length)
interpolate_dists_list.append(interp_dists)
return interpolate_dists_list
def generate_local_course(lengths, modes, max_curvature, step_size):
interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size)
origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0
xs, ys, yaws, directions = [], [], [], []
for (interp_dists, mode, length) in zip(interpolate_dists_list, modes,
lengths):
for dist in interp_dists:
x, y, yaw, direction = interpolate(dist, length, mode,
max_curvature, origin_x,
origin_y, origin_yaw)
xs.append(x)
ys.append(y)
yaws.append(yaw)
directions.append(direction)
origin_x = xs[-1]
origin_y = ys[-1]
origin_yaw = yaws[-1]
return xs, ys, yaws, directions
def interpolate(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw):
if mode == "S": if mode == "S":
path_x[ind] = origin_x + length / max_curvature * math.cos(origin_yaw) x = origin_x + dist / max_curvature * math.cos(origin_yaw)
path_y[ind] = origin_y + length / max_curvature * math.sin(origin_yaw) y = origin_y + dist / max_curvature * math.sin(origin_yaw)
path_yaw[ind] = origin_yaw yaw = origin_yaw
else: # curve else: # curve
ldx = math.sin(length) / max_curvature ldx = math.sin(dist) / max_curvature
ldy = 0.0 ldy = 0.0
yaw = None
if mode == "L": # left turn if mode == "L": # left turn
ldy = (1.0 - math.cos(length)) / max_curvature ldy = (1.0 - math.cos(dist)) / max_curvature
yaw = origin_yaw + dist
elif mode == "R": # right turn elif mode == "R": # right turn
ldy = (1.0 - math.cos(length)) / -max_curvature ldy = (1.0 - math.cos(dist)) / -max_curvature
yaw = origin_yaw - dist
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
path_x[ind] = origin_x + gdx x = origin_x + gdx
path_y[ind] = origin_y + gdy y = origin_y + gdy
if mode == "L": # left turn return x, y, yaw, 1 if length > 0.0 else -1
path_yaw[ind] = origin_yaw + length
elif mode == "R": # right turn
path_yaw[ind] = origin_yaw - length
if length > 0.0:
directions[ind] = 1
else:
directions[ind] = -1
return path_x, path_y, path_yaw, directions
def generate_local_course(total_length, lengths, mode, max_curvature, step_size):
n_point = math.trunc(total_length / step_size) + len(lengths) + 4
px = [0.0 for _ in range(n_point)]
py = [0.0 for _ in range(n_point)]
pyaw = [0.0 for _ in range(n_point)]
directions = [0.0 for _ in range(n_point)]
ind = 1
if lengths[0] > 0.0:
directions[0] = 1
else:
directions[0] = -1
ll = 0.0
for (m, length, i) in zip(mode, lengths, range(len(mode))):
if length == 0.0:
continue
elif length > 0.0:
d = step_size
else:
d = -step_size
# set origin state
ox, oy, oyaw = px[ind], py[ind], pyaw[ind]
ind -= 1
if i >= 1 and (lengths[i - 1] * lengths[i]) > 0:
pd = - d - ll
else:
pd = d - ll
while abs(pd) <= abs(length):
ind += 1
px, py, pyaw, directions = interpolate(
ind, pd, m, max_curvature, ox, oy, oyaw,
px, py, pyaw, directions)
pd += d
ll = length - pd - d # calc remain length
ind += 1
px, py, pyaw, directions = interpolate(
ind, length, m, max_curvature, ox, oy, oyaw,
px, py, pyaw, directions)
# remove unused data
while px[-1] == 0.0:
px.pop()
py.pop()
pyaw.pop()
directions.pop()
return px, py, pyaw, directions
def pi_2_pi(angle): def pi_2_pi(angle):
@@ -334,17 +307,18 @@ def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw] q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw] q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc) paths = generate_path(q0, q1, maxc, step_size)
for path in paths: for path in paths:
x, y, yaw, directions = generate_local_course( xs, ys, yaws, directions = generate_local_course(path.lengths,
path.L, path.lengths, path.ctypes, maxc, step_size * maxc) path.ctypes, maxc,
step_size * maxc)
# convert global coordinate # convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for
* iy + q0[0] for (ix, iy) in zip(x, y)] (ix, iy) in zip(xs, ys)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for
* iy + q0[1] for (ix, iy) in zip(x, y)] (ix, iy) in zip(xs, ys)]
path.yaw = [pi_2_pi(iyaw + q0[2]) for iyaw in yaw] path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws]
path.directions = directions path.directions = directions
path.lengths = [length / maxc for length in path.lengths] path.lengths = [length / maxc for length in path.lengths]
path.L = path.L / maxc path.L = path.L / maxc
@@ -352,54 +326,42 @@ def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
return paths return paths
def reeds_shepp_path_planning(sx, sy, syaw, def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2):
gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size) paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if not paths: if not paths:
return None, None, None, None, None return None, None, None, None, None # could not generate any path
minL = float("Inf") # search minimum cost path
best_path_index = -1 best_path_index = paths.index(min(paths, key=lambda p: abs(p.L)))
for i, _ in enumerate(paths): b_path = paths[best_path_index]
if paths[i].L <= minL:
minL = paths[i].L
best_path_index = i
bpath = paths[best_path_index] return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
return bpath.x, bpath.y, bpath.yaw, bpath.ctypes, bpath.lengths
def main(): def main():
print("Reeds Shepp path planner sample start!!") print("Reeds Shepp path planner sample start!!")
# start_x = -1.0 # [m] start_x = -1.0 # [m]
# start_y = -4.0 # [m] start_y = -4.0 # [m]
# start_yaw = np.deg2rad(-20.0) # [rad] start_yaw = np.deg2rad(-20.0) # [rad]
#
# end_x = 5.0 # [m]
# end_y = 5.0 # [m]
# end_yaw = np.deg2rad(25.0) # [rad]
start_x = 0.0 # [m] end_x = 5.0 # [m]
start_y = 0.0 # [m] end_y = 5.0 # [m]
start_yaw = np.deg2rad(0.0) # [rad] end_yaw = np.deg2rad(25.0) # [rad]
end_x = 0.0 # [m] curvature = 0.1
end_y = 0.0 # [m] step_size = 0.05
end_yaw = np.deg2rad(0.0) # [rad]
curvature = 1.0 xs, ys, yaws, modes, lengths = reeds_shepp_path_planning(start_x, start_y,
step_size = 0.1 start_yaw, end_x,
end_y, end_yaw,
px, py, pyaw, mode, clen = reeds_shepp_path_planning( curvature,
start_x, start_y, start_yaw, end_x, end_y, end_yaw, step_size)
curvature, step_size)
if show_animation: # pragma: no cover if show_animation: # pragma: no cover
plt.cla() plt.cla()
plt.plot(px, py, label="final course " + str(mode)) plt.plot(xs, ys, label="final course " + str(modes))
print(f"{lengths=}")
# plotting # plotting
plot_arrow(start_x, start_y, start_yaw) plot_arrow(start_x, start_y, start_yaw)
@@ -410,7 +372,7 @@ def main():
plt.axis("equal") plt.axis("equal")
plt.show() plt.show()
if not px: if not xs:
assert False, "No path" assert False, "No path"

View File

@@ -1,6 +1,7 @@
import numpy as np
import conftest # Add root path to sys.path import conftest # Add root path to sys.path
from PathPlanning.ReedsSheppPath import reeds_shepp_path_planning as m from PathPlanning.ReedsSheppPath import reeds_shepp_path_planning as m
import numpy as np
def check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x, def check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x,
@@ -8,14 +9,21 @@ def check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x,
assert (abs(px[0] - start_x) <= 0.01) assert (abs(px[0] - start_x) <= 0.01)
assert (abs(py[0] - start_y) <= 0.01) assert (abs(py[0] - start_y) <= 0.01)
assert (abs(pyaw[0] - start_yaw) <= 0.01) assert (abs(pyaw[0] - start_yaw) <= 0.01)
print("x", px[-1], end_x)
assert (abs(px[-1] - end_x) <= 0.01) assert (abs(px[-1] - end_x) <= 0.01)
print("y", py[-1], end_y)
assert (abs(py[-1] - end_y) <= 0.01) assert (abs(py[-1] - end_y) <= 0.01)
print("yaw", pyaw[-1], end_yaw)
assert (abs(pyaw[-1] - end_yaw) <= 0.01) assert (abs(pyaw[-1] - end_yaw) <= 0.01)
def check_path_length(px, py, lengths):
sum_len = sum(abs(length) for length in lengths)
dpx = np.diff(px)
dpy = np.diff(py)
actual_len = sum(
np.hypot(dx, dy) for (dx, dy) in zip(dpx, dpy))
diff_len = sum_len - actual_len
assert (diff_len <= 0.01)
def test1(): def test1():
m.show_animation = False m.show_animation = False
m.main() m.main()
@@ -23,6 +31,7 @@ def test1():
def test2(): def test2():
N_TEST = 10 N_TEST = 10
np.random.seed(1234)
for i in range(N_TEST): for i in range(N_TEST):
start_x = (np.random.rand() - 0.5) * 10.0 # [m] start_x = (np.random.rand() - 0.5) * 10.0 # [m]
@@ -35,11 +44,13 @@ def test2():
curvature = 1.0 / (np.random.rand() * 5.0) curvature = 1.0 / (np.random.rand() * 5.0)
px, py, pyaw, mode, clen = m.reeds_shepp_path_planning( px, py, pyaw, mode, lengths = m.reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature) start_x, start_y, start_yaw,
end_x, end_y, end_yaw, curvature)
check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x,
end_x, end_y, end_yaw) end_y, end_yaw)
check_path_length(px, py, lengths)
if __name__ == '__main__': if __name__ == '__main__':