clean up localization docs (#570)

* clean up localization docs

* clean up localization docs

* clean up localization docs
This commit is contained in:
Atsushi Sakai
2021-11-18 22:35:10 +09:00
committed by GitHub
parent 137e372db1
commit 35984e8978
9 changed files with 28 additions and 1504 deletions

View File

@@ -222,9 +222,8 @@ described with two parameters, the mean (:math:`\mu`) and the variance
f(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\big [{-\frac{(x-\mu)^2}{2\sigma^2} }\big ]
Range is
.. math:: [-\inf,\inf]
Range is :math:`[-\inf,\inf]`
This is just a function of mean(\ :math:`\mu`) and standard deviation
(:math:`\sigma`) and what gives the normal distribution the
@@ -279,7 +278,8 @@ New mean is
.. math:: \mu_\mathtt{new} = \frac{\sigma_z^2\bar\mu + \bar\sigma^2z}{\bar\sigma^2+\sigma_z^2}
New variance is
New variance is
.. math::
@@ -336,7 +336,7 @@ of the two.
.. math::
\begin{gathered}\mu_x = \mu_p + \mu_z \\
\sigma_x^2 = \sigma_z^2+\sigma_p^2\, \square\end{gathered}
\sigma_x^2 = \sigma_z^2+\sigma_p^2\, \end{gathered}
.. code-block:: ipython3

View File

@@ -2,14 +2,6 @@
Extended Kalman Filter Localization
-----------------------------------
.. code-block:: ipython3
from IPython.display import Image
Image(filename="ekf.png",width=600)
.. image:: extended_kalman_filter_localization_files/extended_kalman_filter_localization_1_0.png
:width: 600px
@@ -18,8 +10,6 @@ Extended Kalman Filter Localization
.. figure:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Localization/extended_kalman_filter/animation.gif
:alt: EKF
EKF
This is a sensor fusion localization with Extended Kalman Filter(EKF).
The blue line is true trajectory, the black line is dead reckoning
@@ -127,7 +117,7 @@ The observation function states that
Its Jacobian matrix is
:math:`\begin{equation*} J_g = \begin{bmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial \phi} & \frac{\partial x'}{\partial v}\\ \frac{\partial y'}{\partial x}& \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial \phi} & \frac{\partial y'}{ \partialv}\\ \end{bmatrix} \end{equation*}`
:math:`\begin{equation*} J_g = \begin{bmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial \phi} & \frac{\partial x'}{\partial v}\\ \frac{\partial y'}{\partial x}& \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial \phi} & \frac{\partial y'}{ \partial v}\\ \end{bmatrix} \end{equation*}`
:math:`\begin{equation*}  = \begin{bmatrix} 1& 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ \end{bmatrix} \end{equation*}`

View File

@@ -15,7 +15,8 @@ This is a sensor fusion localization with Unscented Kalman Filter(UKF).
The lines and points are same meaning of the EKF simulation.
Ref:
References:
~~~~~~~~~~~
- `Discriminatively Trained Unscented Kalman Filter for Mobile Robot
Localization`_
@@ -37,9 +38,26 @@ It is assumed that the robot can measure a distance from landmarks
This measurements are used for PF localization.
Ref:
How to calculate covariance matrix from particles
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The covariance matrix :math:`\Xi` from particle information is calculated by the following equation:
.. math:: \Xi_{j,k}=\frac{1}{1-\sum^N_{i=1}(w^i)^2}\sum^N_{i=1}w^i(x^i_j-\mu_j)(x^i_k-\mu_k)
- :math:`\Xi_{j,k}` is covariance matrix element at row :math:`i` and column :math:`k`.
- :math:`w^i` is the weight of the :math:`i` th particle.
- :math:`x^i_j` is the :math:`j` th state of the :math:`i` th particle.
- :math:`\mu_j` is the :math:`j` th mean state of particles.
References:
~~~~~~~~~~~
- `PROBABILISTIC ROBOTICS`_
- `Improving the particle filter in high dimensions using conjugate artificial process noise`_
Histogram filter localization
-----------------------------
@@ -59,12 +77,14 @@ localization.
Initial position is not needed.
Ref:
References:
~~~~~~~~~~~
- `PROBABILISTIC ROBOTICS`_
.. _PROBABILISTIC ROBOTICS: http://www.probabilistic-robotics.org/
.. _Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization: https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization
.. _Improving the particle filter in high dimensions using conjugate artificial process noise: https://arxiv.org/pdf/1801.07000.pdf
.. |2| image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Localization/unscented_kalman_filter/animation.gif
.. |3| image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Localization/particle_filter/animation.gif