mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-02-19 10:04:29 -05:00
Sobol sampler implemented (#413)
This commit is contained in:
270
PathPlanning/RRT/rrt_with_sobol_sampler.py
Normal file
270
PathPlanning/RRT/rrt_with_sobol_sampler.py
Normal file
@@ -0,0 +1,270 @@
|
||||
"""
|
||||
|
||||
Path planning Sample Code with Randomized Rapidly-Exploring Random
|
||||
Trees with sobol low discrepancy sampler(RRTSobol).
|
||||
Sobol wiki https://en.wikipedia.org/wiki/Sobol_sequence
|
||||
|
||||
The goal of low discrepancy samplers is to generate a sequence of points that
|
||||
optimizes a criterion called dispersion. Intuitively, the idea is to place
|
||||
samples to cover the exploration space in a way that makes the largest
|
||||
uncovered area be as small as possible. This generalizes of the idea of grid
|
||||
resolution. For a grid, the resolution may be selected by defining the step
|
||||
size for each axis. As the step size is decreased, the resolution increases.
|
||||
If a grid-based motion planning algorithm can increase the resolution
|
||||
arbitrarily, it becomes resolution complete. Dispersion can be considered as a
|
||||
powerful generalization of the notion of resolution.
|
||||
|
||||
Taken from
|
||||
LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.
|
||||
|
||||
|
||||
authors:
|
||||
First implementation AtsushiSakai(@Atsushi_twi)
|
||||
Sobol sampler Rafael A.
|
||||
Rojas (rafaelrojasmiliani@gmail.com)
|
||||
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
import random
|
||||
from sobol import sobol_quasirand
|
||||
import sys
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
class RRTSobol:
|
||||
"""
|
||||
Class for RRTSobol planning
|
||||
"""
|
||||
|
||||
class Node:
|
||||
"""
|
||||
RRTSobol Node
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.path_x = []
|
||||
self.path_y = []
|
||||
self.parent = None
|
||||
|
||||
def __init__(self,
|
||||
start,
|
||||
goal,
|
||||
obstacle_list,
|
||||
rand_area,
|
||||
expand_dis=3.0,
|
||||
path_resolution=0.5,
|
||||
goal_sample_rate=5,
|
||||
max_iter=500):
|
||||
"""
|
||||
Setting Parameter
|
||||
|
||||
start:Start Position [x,y]
|
||||
goal:Goal Position [x,y]
|
||||
obstacle_list:obstacle Positions [[x,y,size],...]
|
||||
randArea:Random Sampling Area [min,max]
|
||||
|
||||
"""
|
||||
self.start = self.Node(start[0], start[1])
|
||||
self.end = self.Node(goal[0], goal[1])
|
||||
self.min_rand = rand_area[0]
|
||||
self.max_rand = rand_area[1]
|
||||
self.expand_dis = expand_dis
|
||||
self.path_resolution = path_resolution
|
||||
self.goal_sample_rate = goal_sample_rate
|
||||
self.max_iter = max_iter
|
||||
self.obstacle_list = obstacle_list
|
||||
self.node_list = []
|
||||
self.sobol_inter_ = 0
|
||||
|
||||
def planning(self, animation=True):
|
||||
"""
|
||||
rrt path planning
|
||||
|
||||
animation: flag for animation on or off
|
||||
"""
|
||||
|
||||
self.node_list = [self.start]
|
||||
for i in range(self.max_iter):
|
||||
rnd_node = self.get_random_node()
|
||||
nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
|
||||
nearest_node = self.node_list[nearest_ind]
|
||||
|
||||
new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
|
||||
|
||||
if self.check_collision(new_node, self.obstacle_list):
|
||||
self.node_list.append(new_node)
|
||||
|
||||
if animation and i % 5 == 0:
|
||||
self.draw_graph(rnd_node)
|
||||
|
||||
if self.calc_dist_to_goal(self.node_list[-1].x,
|
||||
self.node_list[-1].y) <= self.expand_dis:
|
||||
final_node = self.steer(self.node_list[-1], self.end,
|
||||
self.expand_dis)
|
||||
if self.check_collision(final_node, self.obstacle_list):
|
||||
return self.generate_final_course(len(self.node_list) - 1)
|
||||
|
||||
if animation and i % 5:
|
||||
self.draw_graph(rnd_node)
|
||||
|
||||
return None # cannot find path
|
||||
|
||||
def steer(self, from_node, to_node, extend_length=float("inf")):
|
||||
|
||||
new_node = self.Node(from_node.x, from_node.y)
|
||||
d, theta = self.calc_distance_and_angle(new_node, to_node)
|
||||
|
||||
new_node.path_x = [new_node.x]
|
||||
new_node.path_y = [new_node.y]
|
||||
|
||||
if extend_length > d:
|
||||
extend_length = d
|
||||
|
||||
n_expand = math.floor(extend_length / self.path_resolution)
|
||||
|
||||
for _ in range(n_expand):
|
||||
new_node.x += self.path_resolution * math.cos(theta)
|
||||
new_node.y += self.path_resolution * math.sin(theta)
|
||||
new_node.path_x.append(new_node.x)
|
||||
new_node.path_y.append(new_node.y)
|
||||
|
||||
d, _ = self.calc_distance_and_angle(new_node, to_node)
|
||||
if d <= self.path_resolution:
|
||||
new_node.path_x.append(to_node.x)
|
||||
new_node.path_y.append(to_node.y)
|
||||
new_node.x = to_node.x
|
||||
new_node.y = to_node.y
|
||||
|
||||
new_node.parent = from_node
|
||||
|
||||
return new_node
|
||||
|
||||
def generate_final_course(self, goal_ind):
|
||||
path = [[self.end.x, self.end.y]]
|
||||
node = self.node_list[goal_ind]
|
||||
while node.parent is not None:
|
||||
path.append([node.x, node.y])
|
||||
node = node.parent
|
||||
path.append([node.x, node.y])
|
||||
|
||||
return path
|
||||
|
||||
def calc_dist_to_goal(self, x, y):
|
||||
dx = x - self.end.x
|
||||
dy = y - self.end.y
|
||||
return math.hypot(dx, dy)
|
||||
|
||||
def get_random_node(self):
|
||||
if random.randint(0, 100) > self.goal_sample_rate:
|
||||
rand_coordinates, n = sobol_quasirand(2, self.sobol_inter_)
|
||||
|
||||
rand_coordinates = self.min_rand + \
|
||||
rand_coordinates*(self.max_rand - self.min_rand)
|
||||
self.sobol_inter_ = n
|
||||
rnd = self.Node(*rand_coordinates)
|
||||
|
||||
else: # goal point sampling
|
||||
rnd = self.Node(self.end.x, self.end.y)
|
||||
return rnd
|
||||
|
||||
def draw_graph(self, rnd=None):
|
||||
plt.clf()
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect(
|
||||
'key_release_event',
|
||||
lambda event: [sys.exit(0) if event.key == 'escape' else None])
|
||||
if rnd is not None:
|
||||
plt.plot(rnd.x, rnd.y, "^k")
|
||||
for node in self.node_list:
|
||||
if node.parent:
|
||||
plt.plot(node.path_x, node.path_y, "-g")
|
||||
|
||||
for (ox, oy, size) in self.obstacle_list:
|
||||
self.plot_circle(ox, oy, size)
|
||||
|
||||
plt.plot(self.start.x, self.start.y, "xr")
|
||||
plt.plot(self.end.x, self.end.y, "xr")
|
||||
plt.axis("equal")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
|
||||
@staticmethod
|
||||
def plot_circle(x, y, size, color="-b"): # pragma: no cover
|
||||
deg = list(range(0, 360, 5))
|
||||
deg.append(0)
|
||||
xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
|
||||
yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
|
||||
plt.plot(xl, yl, color)
|
||||
|
||||
@staticmethod
|
||||
def get_nearest_node_index(node_list, rnd_node):
|
||||
dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2
|
||||
for node in node_list]
|
||||
minind = dlist.index(min(dlist))
|
||||
|
||||
return minind
|
||||
|
||||
@staticmethod
|
||||
def check_collision(node, obstacle_list):
|
||||
|
||||
if node is None:
|
||||
return False
|
||||
|
||||
for (ox, oy, size) in obstacle_list:
|
||||
dx_list = [ox - x for x in node.path_x]
|
||||
dy_list = [oy - y for y in node.path_y]
|
||||
d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]
|
||||
|
||||
if min(d_list) <= size**2:
|
||||
return False # collision
|
||||
|
||||
return True # safe
|
||||
|
||||
@staticmethod
|
||||
def calc_distance_and_angle(from_node, to_node):
|
||||
dx = to_node.x - from_node.x
|
||||
dy = to_node.y - from_node.y
|
||||
d = math.hypot(dx, dy)
|
||||
theta = math.atan2(dy, dx)
|
||||
return d, theta
|
||||
|
||||
|
||||
def main(gx=6.0, gy=10.0):
|
||||
print("start " + __file__)
|
||||
|
||||
# ====Search Path with RRTSobol====
|
||||
obstacle_list = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2),
|
||||
(9, 5, 2), (8, 10, 1)] # [x, y, radius]
|
||||
# Set Initial parameters
|
||||
rrt = RRTSobol(
|
||||
start=[0, 0],
|
||||
goal=[gx, gy],
|
||||
rand_area=[-2, 15],
|
||||
obstacle_list=obstacle_list)
|
||||
path = rrt.planning(animation=show_animation)
|
||||
|
||||
if path is None:
|
||||
print("Cannot find path")
|
||||
else:
|
||||
print("found path!!")
|
||||
|
||||
# Draw final path
|
||||
if show_animation:
|
||||
rrt.draw_graph()
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.01) # Need for Mac
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user