mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-02-18 06:31:28 -05:00
using pathlib based local module import (#722)
* using pathlib based local module import * remove unused import
This commit is contained in:
146
PathPlanning/LQRPlanner/lqr_planner.py
Normal file
146
PathPlanning/LQRPlanner/lqr_planner.py
Normal file
@@ -0,0 +1,146 @@
|
||||
"""
|
||||
|
||||
LQR local path planning
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
import random
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import scipy.linalg as la
|
||||
|
||||
SHOW_ANIMATION = True
|
||||
|
||||
|
||||
class LQRPlanner:
|
||||
|
||||
def __init__(self):
|
||||
self.MAX_TIME = 100.0 # Maximum simulation time
|
||||
self.DT = 0.1 # Time tick
|
||||
self.GOAL_DIST = 0.1
|
||||
self.MAX_ITER = 150
|
||||
self.EPS = 0.01
|
||||
|
||||
def lqr_planning(self, sx, sy, gx, gy, show_animation=True):
|
||||
|
||||
rx, ry = [sx], [sy]
|
||||
|
||||
x = np.array([sx - gx, sy - gy]).reshape(2, 1) # State vector
|
||||
|
||||
# Linear system model
|
||||
A, B = self.get_system_model()
|
||||
|
||||
found_path = False
|
||||
|
||||
time = 0.0
|
||||
while time <= self.MAX_TIME:
|
||||
time += self.DT
|
||||
|
||||
u = self.lqr_control(A, B, x)
|
||||
|
||||
x = A @ x + B @ u
|
||||
|
||||
rx.append(x[0, 0] + gx)
|
||||
ry.append(x[1, 0] + gy)
|
||||
|
||||
d = math.sqrt((gx - rx[-1]) ** 2 + (gy - ry[-1]) ** 2)
|
||||
if d <= self.GOAL_DIST:
|
||||
found_path = True
|
||||
break
|
||||
|
||||
# animation
|
||||
if show_animation: # pragma: no cover
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect('key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
plt.plot(sx, sy, "or")
|
||||
plt.plot(gx, gy, "ob")
|
||||
plt.plot(rx, ry, "-r")
|
||||
plt.axis("equal")
|
||||
plt.pause(1.0)
|
||||
|
||||
if not found_path:
|
||||
print("Cannot found path")
|
||||
return [], []
|
||||
|
||||
return rx, ry
|
||||
|
||||
def solve_dare(self, A, B, Q, R):
|
||||
"""
|
||||
solve a discrete time_Algebraic Riccati equation (DARE)
|
||||
"""
|
||||
X, Xn = Q, Q
|
||||
|
||||
for i in range(self.MAX_ITER):
|
||||
Xn = A.T * X * A - A.T * X * B * \
|
||||
la.inv(R + B.T * X * B) * B.T * X * A + Q
|
||||
if (abs(Xn - X)).max() < self.EPS:
|
||||
break
|
||||
X = Xn
|
||||
|
||||
return Xn
|
||||
|
||||
def dlqr(self, A, B, Q, R):
|
||||
"""Solve the discrete time lqr controller.
|
||||
x[k+1] = A x[k] + B u[k]
|
||||
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
|
||||
# ref Bertsekas, p.151
|
||||
"""
|
||||
|
||||
# first, try to solve the ricatti equation
|
||||
X = self.solve_dare(A, B, Q, R)
|
||||
|
||||
# compute the LQR gain
|
||||
K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A)
|
||||
|
||||
eigValues = la.eigvals(A - B @ K)
|
||||
|
||||
return K, X, eigValues
|
||||
|
||||
def get_system_model(self):
|
||||
|
||||
A = np.array([[self.DT, 1.0],
|
||||
[0.0, self.DT]])
|
||||
B = np.array([0.0, 1.0]).reshape(2, 1)
|
||||
|
||||
return A, B
|
||||
|
||||
def lqr_control(self, A, B, x):
|
||||
|
||||
Kopt, X, ev = self.dlqr(A, B, np.eye(2), np.eye(1))
|
||||
|
||||
u = -Kopt @ x
|
||||
|
||||
return u
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
ntest = 10 # number of goal
|
||||
area = 100.0 # sampling area
|
||||
|
||||
lqr_planner = LQRPlanner()
|
||||
|
||||
for i in range(ntest):
|
||||
sx = 6.0
|
||||
sy = 6.0
|
||||
gx = random.uniform(-area, area)
|
||||
gy = random.uniform(-area, area)
|
||||
|
||||
rx, ry = lqr_planner.lqr_planning(sx, sy, gx, gy, show_animation=SHOW_ANIMATION)
|
||||
|
||||
if SHOW_ANIMATION: # pragma: no cover
|
||||
plt.plot(sx, sy, "or")
|
||||
plt.plot(gx, gy, "ob")
|
||||
plt.plot(rx, ry, "-r")
|
||||
plt.axis("equal")
|
||||
plt.pause(1.0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user