first release rear wheel feedback

This commit is contained in:
AtsushiSakai
2017-06-18 23:24:57 -07:00
parent 74b3470d40
commit 8a3e5a0076

View File

@@ -1,21 +1,19 @@
#! /usr/bin/python
"""
Path tracking simulation with pure pursuit steering control and PID speed control.
Path tracking simulation with rear wheel feedback steering control and PID speed control.
author: Atsushi Sakai
"""
# import numpy as np
import math
import matplotlib.pyplot as plt
import unicycle_model
from pycubicspline import pycubicspline
Kp = 1.0 # speed propotional gain
Lf = 1.0 # look-ahead distance
# animation = True
animation = False
animation = True
# animation = False
def PIDControl(target, current):
@@ -24,56 +22,61 @@ def PIDControl(target, current):
return a
def pure_pursuit_control(state, cx, cy, pind):
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
ind = calc_target_index(state, cx, cy)
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
if pind >= ind:
ind = pind
return angle
# print(pind, ind)
if ind < len(cx):
tx = cx[ind]
ty = cy[ind]
else:
tx = cx[-1]
ty = cy[-1]
ind = len(cx) - 1
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind):
KTH = 1.0
KE = 0.5
if state.v < 0: # back
alpha = math.pi - alpha
# if alpha > 0:
# alpha = math.pi - alpha
# else:
# alpha = math.pi + alpha
ind, e = calc_nearest_index(state, cx, cy, cyaw)
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
k = ck[ind]
v = state.v
th_e = pi_2_pi(state.yaw - cyaw[ind])
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
# pass
if th_e == 0.0 or omega == 0.0:
return 0.0, ind
delta = math.atan2(unicycle_model.L * omega / v, 1.0)
# print(k, v, e, th_e, omega, delta)
return delta, ind
def calc_target_index(state, cx, cy):
def calc_nearest_index(state, cx, cy, cyaw):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
mind = min(d)
L = 0.0
ind = d.index(mind)
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind + 1] - cx[ind]
dy = cx[ind + 1] - cx[ind]
L += math.sqrt(dx ** 2 + dy ** 2)
ind += 1
dxl = cx[ind] - state.x
dyl = cy[ind] - state.y
return ind
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
if angle < 0:
mind *= -1
return ind, mind
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
T = 500.0 # max simulation time
goal_dis = 0.3
@@ -81,17 +84,17 @@ def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
# lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_target_index(state, cx, cy)
target_ind = calc_nearest_index(state, cx, cy, cyaw)
while T >= time:
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
di, target_ind = rear_wheel_feedback_control(
state, cx, cy, cyaw, ck, target_ind)
ai = PIDControl(speed_profile[target_ind], state.v)
state = unicycle_model.update(state, ai, di)
@@ -113,7 +116,7 @@ def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
v.append(state.v)
t.append(time)
if target_ind % 20 == 0 and animation:
if target_ind % 1 == 0 and animation:
plt.cla()
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
@@ -153,7 +156,6 @@ def set_stop_point(target_speed, cx, cy, cyaw):
if switch:
speed_profile[i] = 0.0
speed_profile[0] = 0.0
speed_profile[-1] = 0.0
d.append(d[-1])
@@ -175,7 +177,7 @@ def calc_speed_profile(cx, cy, cyaw, target_speed):
def main():
print("rear wheel feedback tracking start!!")
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
ay = [0.0, 0.0, 5.0, 6.5, 0.0, 5.0, -2.0]
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
goal = [ax[-1], ay[-1]]
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
@@ -183,7 +185,7 @@ def main():
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, sp, goal)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)
flg, _ = plt.subplots(1)
print(len(ax), len(ay))