mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-02-11 10:38:27 -05:00
first release rear wheel feedback
This commit is contained in:
@@ -1,21 +1,19 @@
|
|||||||
#! /usr/bin/python
|
#! /usr/bin/python
|
||||||
"""
|
"""
|
||||||
|
|
||||||
Path tracking simulation with pure pursuit steering control and PID speed control.
|
Path tracking simulation with rear wheel feedback steering control and PID speed control.
|
||||||
|
|
||||||
author: Atsushi Sakai
|
author: Atsushi Sakai
|
||||||
|
|
||||||
"""
|
"""
|
||||||
# import numpy as np
|
|
||||||
import math
|
import math
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import unicycle_model
|
import unicycle_model
|
||||||
from pycubicspline import pycubicspline
|
from pycubicspline import pycubicspline
|
||||||
|
|
||||||
Kp = 1.0 # speed propotional gain
|
Kp = 1.0 # speed propotional gain
|
||||||
Lf = 1.0 # look-ahead distance
|
animation = True
|
||||||
# animation = True
|
# animation = False
|
||||||
animation = False
|
|
||||||
|
|
||||||
|
|
||||||
def PIDControl(target, current):
|
def PIDControl(target, current):
|
||||||
@@ -24,56 +22,61 @@ def PIDControl(target, current):
|
|||||||
return a
|
return a
|
||||||
|
|
||||||
|
|
||||||
def pure_pursuit_control(state, cx, cy, pind):
|
def pi_2_pi(angle):
|
||||||
|
while(angle > math.pi):
|
||||||
|
angle = angle - 2.0 * math.pi
|
||||||
|
|
||||||
ind = calc_target_index(state, cx, cy)
|
while(angle < -math.pi):
|
||||||
|
angle = angle + 2.0 * math.pi
|
||||||
|
|
||||||
if pind >= ind:
|
return angle
|
||||||
ind = pind
|
|
||||||
|
|
||||||
# print(pind, ind)
|
|
||||||
if ind < len(cx):
|
|
||||||
tx = cx[ind]
|
|
||||||
ty = cy[ind]
|
|
||||||
else:
|
|
||||||
tx = cx[-1]
|
|
||||||
ty = cy[-1]
|
|
||||||
ind = len(cx) - 1
|
|
||||||
|
|
||||||
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
|
def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind):
|
||||||
|
KTH = 1.0
|
||||||
|
KE = 0.5
|
||||||
|
|
||||||
if state.v < 0: # back
|
ind, e = calc_nearest_index(state, cx, cy, cyaw)
|
||||||
alpha = math.pi - alpha
|
|
||||||
# if alpha > 0:
|
|
||||||
# alpha = math.pi - alpha
|
|
||||||
# else:
|
|
||||||
# alpha = math.pi + alpha
|
|
||||||
|
|
||||||
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
|
k = ck[ind]
|
||||||
|
v = state.v
|
||||||
|
th_e = pi_2_pi(state.yaw - cyaw[ind])
|
||||||
|
|
||||||
|
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
|
||||||
|
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
|
||||||
|
# pass
|
||||||
|
|
||||||
|
if th_e == 0.0 or omega == 0.0:
|
||||||
|
return 0.0, ind
|
||||||
|
|
||||||
|
delta = math.atan2(unicycle_model.L * omega / v, 1.0)
|
||||||
|
|
||||||
|
# print(k, v, e, th_e, omega, delta)
|
||||||
|
|
||||||
return delta, ind
|
return delta, ind
|
||||||
|
|
||||||
|
|
||||||
def calc_target_index(state, cx, cy):
|
def calc_nearest_index(state, cx, cy, cyaw):
|
||||||
dx = [state.x - icx for icx in cx]
|
dx = [state.x - icx for icx in cx]
|
||||||
dy = [state.y - icy for icy in cy]
|
dy = [state.y - icy for icy in cy]
|
||||||
|
|
||||||
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
|
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
|
||||||
|
|
||||||
ind = d.index(min(d))
|
mind = min(d)
|
||||||
|
|
||||||
L = 0.0
|
ind = d.index(mind)
|
||||||
|
|
||||||
while Lf > L and (ind + 1) < len(cx):
|
dxl = cx[ind] - state.x
|
||||||
dx = cx[ind + 1] - cx[ind]
|
dyl = cy[ind] - state.y
|
||||||
dy = cx[ind + 1] - cx[ind]
|
|
||||||
L += math.sqrt(dx ** 2 + dy ** 2)
|
|
||||||
ind += 1
|
|
||||||
|
|
||||||
return ind
|
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
|
||||||
|
if angle < 0:
|
||||||
|
mind *= -1
|
||||||
|
|
||||||
|
return ind, mind
|
||||||
|
|
||||||
|
|
||||||
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
|
def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
|
||||||
|
|
||||||
T = 500.0 # max simulation time
|
T = 500.0 # max simulation time
|
||||||
goal_dis = 0.3
|
goal_dis = 0.3
|
||||||
@@ -81,17 +84,17 @@ def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
|
|||||||
|
|
||||||
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
|
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
|
||||||
|
|
||||||
# lastIndex = len(cx) - 1
|
|
||||||
time = 0.0
|
time = 0.0
|
||||||
x = [state.x]
|
x = [state.x]
|
||||||
y = [state.y]
|
y = [state.y]
|
||||||
yaw = [state.yaw]
|
yaw = [state.yaw]
|
||||||
v = [state.v]
|
v = [state.v]
|
||||||
t = [0.0]
|
t = [0.0]
|
||||||
target_ind = calc_target_index(state, cx, cy)
|
target_ind = calc_nearest_index(state, cx, cy, cyaw)
|
||||||
|
|
||||||
while T >= time:
|
while T >= time:
|
||||||
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
|
di, target_ind = rear_wheel_feedback_control(
|
||||||
|
state, cx, cy, cyaw, ck, target_ind)
|
||||||
ai = PIDControl(speed_profile[target_ind], state.v)
|
ai = PIDControl(speed_profile[target_ind], state.v)
|
||||||
state = unicycle_model.update(state, ai, di)
|
state = unicycle_model.update(state, ai, di)
|
||||||
|
|
||||||
@@ -113,7 +116,7 @@ def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
|
|||||||
v.append(state.v)
|
v.append(state.v)
|
||||||
t.append(time)
|
t.append(time)
|
||||||
|
|
||||||
if target_ind % 20 == 0 and animation:
|
if target_ind % 1 == 0 and animation:
|
||||||
plt.cla()
|
plt.cla()
|
||||||
plt.plot(cx, cy, "-r", label="course")
|
plt.plot(cx, cy, "-r", label="course")
|
||||||
plt.plot(x, y, "ob", label="trajectory")
|
plt.plot(x, y, "ob", label="trajectory")
|
||||||
@@ -153,7 +156,6 @@ def set_stop_point(target_speed, cx, cy, cyaw):
|
|||||||
if switch:
|
if switch:
|
||||||
speed_profile[i] = 0.0
|
speed_profile[i] = 0.0
|
||||||
|
|
||||||
speed_profile[0] = 0.0
|
|
||||||
speed_profile[-1] = 0.0
|
speed_profile[-1] = 0.0
|
||||||
|
|
||||||
d.append(d[-1])
|
d.append(d[-1])
|
||||||
@@ -175,7 +177,7 @@ def calc_speed_profile(cx, cy, cyaw, target_speed):
|
|||||||
def main():
|
def main():
|
||||||
print("rear wheel feedback tracking start!!")
|
print("rear wheel feedback tracking start!!")
|
||||||
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
|
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
|
||||||
ay = [0.0, 0.0, 5.0, 6.5, 0.0, 5.0, -2.0]
|
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
|
||||||
goal = [ax[-1], ay[-1]]
|
goal = [ax[-1], ay[-1]]
|
||||||
|
|
||||||
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
|
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
|
||||||
@@ -183,7 +185,7 @@ def main():
|
|||||||
|
|
||||||
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
|
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
|
||||||
|
|
||||||
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, sp, goal)
|
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)
|
||||||
|
|
||||||
flg, _ = plt.subplots(1)
|
flg, _ = plt.subplots(1)
|
||||||
print(len(ax), len(ay))
|
print(len(ax), len(ay))
|
||||||
|
|||||||
Reference in New Issue
Block a user