From 90598716fb89ffc4d4dabd6a6c30a4bd9a9e05b0 Mon Sep 17 00:00:00 2001 From: Atsushi Sakai Date: Wed, 12 Dec 2018 22:34:18 +0900 Subject: [PATCH] update docs --- .../extended_kalman_filter_localization.ipynb | 2 +- docs/modules/extended_kalman_filter_localization.rst | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb b/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb index b4061b39..220a5043 100644 --- a/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb +++ b/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb @@ -124,8 +124,8 @@ "$\\begin{equation*}\n", "B=\n", "\\begin{bmatrix}\n", - "sin(\\phi)dt & 0\\\\\n", "cos(\\phi)dt & 0\\\\\n", + "sin(\\phi)dt & 0\\\\\n", "0 & dt\\\\\n", "1 & 0\\\\\n", "\\end{bmatrix}\n", diff --git a/docs/modules/extended_kalman_filter_localization.rst b/docs/modules/extended_kalman_filter_localization.rst index a889eef7..96f29a6b 100644 --- a/docs/modules/extended_kalman_filter_localization.rst +++ b/docs/modules/extended_kalman_filter_localization.rst @@ -91,7 +91,7 @@ where :math:`\begin{equation*} F= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \end{equation*}` -:math:`\begin{equation*} B= \begin{bmatrix} sin(\phi)dt & 0\\ cos(\phi)dt & 0\\ 0 & dt\\ 1 & 0\\ \end{bmatrix} \end{equation*}` +:math:`\begin{equation*} B= \begin{bmatrix} cos(\phi)dt & 0\\ sin(\phi)dt & 0\\ 0 & dt\\ 1 & 0\\ \end{bmatrix} \end{equation*}` :math:`dt` is a time interval. @@ -102,7 +102,7 @@ Its Jacobian matrix is :math:`\begin{equation*} J_F= \begin{bmatrix} \frac{dx}{dx}& \frac{dx}{dy} & \frac{dx}{d\phi} & \frac{dx}{dv}\\ \frac{dy}{dx}& \frac{dy}{dy} & \frac{dy}{d\phi} & \frac{dy}{dv}\\ \frac{d\phi}{dx}& \frac{d\phi}{dy} & \frac{d\phi}{d\phi} & \frac{d\phi}{dv}\\ \frac{dv}{dx}& \frac{dv}{dy} & \frac{dv}{d\phi} & \frac{dv}{dv}\\ \end{bmatrix} \end{equation*}` -:math:`\begin{equation*}  = \begin{bmatrix} 1& 0 & -v sin(\phi)dt & cos(\phi)dt\\ 0 & 1 & v cos(\phi)dt & sin(\phi) dt\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} \end{equation*}` +:math:`\begin{equation*}  = \begin{bmatrix} 1& 0 & -v cos(\phi)dt & sin(\phi)dt\\ 0 & 1 & v cos(\phi)dt & sin(\phi) dt\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} \end{equation*}` Observation Model ~~~~~~~~~~~~~~~~~