keep coding

This commit is contained in:
Atsushi Sakai
2018-03-16 14:35:35 -07:00
parent c57b40e4ee
commit bc296aada5

View File

@@ -12,44 +12,55 @@ import matplotlib.pyplot as plt
from scipy.stats import norm
EXTEND_AREA = 10.0 # [m] grid map extention length
SIM_TIME = 50.0 # simulation time [s]
DT = 0.1 # time tick [s]
MAX_RANGE = 10.0 # maximum observation range
show_animation = True
def generate_gaussian_grid_map(ox, oy, xyreso, std):
def observation_update(gmap, z, std, xyreso, minx, miny):
minx, miny, maxx, maxy, xw, yw = calc_grid_map_config(ox, oy, xyreso)
for iz in range(z.shape[0]):
for ix in range(len(gmap)):
for iy in range(len(gmap[ix])):
gmap = [[0.0 for i in range(yw)] for i in range(xw)]
zr = z[iz, 0]
x = ix * xyreso + minx
y = iy * xyreso + miny
for ix in range(xw):
for iy in range(yw):
d = math.sqrt((x - z[iz, 1])**2 + (y - z[iz, 2])**2)
x = ix * xyreso + minx
y = iy * xyreso + miny
pdf = (1.0 - norm.cdf(abs(d - zr), 0.0, std))
gmap[ix][iy] *= pdf
# Search minimum distance
mindis = float("inf")
for (iox, ioy) in zip(ox, oy):
d = math.sqrt((iox - x)**2 + (ioy - y)**2)
if mindis >= d:
mindis = d
gmap = normalize_probability(gmap)
pdf = (1.0 - norm.cdf(mindis, 0.0, std))
gmap[ix][iy] = pdf
return gmap, minx, maxx, miny, maxy
return gmap
def calc_grid_map_config(ox, oy, xyreso):
minx = round(min(ox) - EXTEND_AREA / 2.0)
miny = round(min(oy) - EXTEND_AREA / 2.0)
maxx = round(max(ox) + EXTEND_AREA / 2.0)
maxy = round(max(oy) + EXTEND_AREA / 2.0)
xw = int(round((maxx - minx) / xyreso))
yw = int(round((maxy - miny) / xyreso))
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
return u
return minx, miny, maxx, maxy, xw, yw
def motion_model(x, u):
F = np.matrix([[1.0, 0, 0, 0],
[0, 1.0, 0, 0],
[0, 0, 1.0, 0],
[0, 0, 0, 0]])
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT],
[1.0, 0.0]])
x = F * x + B * u
return x
def draw_heatmap(data, minx, maxx, miny, maxy, xyreso):
@@ -59,24 +70,91 @@ def draw_heatmap(data, minx, maxx, miny, maxy, xyreso):
plt.axis("equal")
def observation(xTrue, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 3)))
for i in range(len(RFID[:, 0])):
dx = xTrue[0, 0] - RFID[i, 0]
dy = xTrue[1, 0] - RFID[i, 1]
d = math.sqrt(dx**2 + dy**2)
if d <= MAX_RANGE:
dn = d
zi = np.matrix([dn, RFID[i, 0], RFID[i, 1]])
z = np.vstack((z, zi))
return xTrue, z
def normalize_probability(gmap):
sump = sum([sum(igmap) for igmap in gmap])
# print(sump)
for i in range(len(gmap)):
for ii in range(len(gmap[i])):
gmap[i][ii] /= sump
return gmap
def init_gmap(xyreso):
minx = -15.0
miny = -5.0
maxx = 15.0
maxy = 25.0
xw = int(round((maxx - minx) / xyreso))
yw = int(round((maxy - miny) / xyreso))
gmap = [[1.0 for i in range(yw)] for i in range(xw)]
gmap = normalize_probability(gmap)
return gmap, minx, maxx, miny, maxy,
def main():
print(__file__ + " start!!")
xyreso = 0.5 # xy grid resolution
STD = 5.0 # standard diviation for gaussian distribution
STD = 1.0 # standard diviation for gaussian distribution
for i in range(5):
ox = (np.random.rand(4) - 0.5) * 10.0
oy = (np.random.rand(4) - 0.5) * 10.0
gmap, minx, maxx, miny, maxy = generate_gaussian_grid_map(
ox, oy, xyreso, STD)
# RFID positions [x, y]
RFID = np.array([[10.0, 0.0],
[10.0, 10.0],
[0.0, 15.0],
[-5.0, 20.0]])
time = 0.0
xTrue = np.matrix(np.zeros((4, 1)))
gmap, minx, maxx, miny, maxy = init_gmap(xyreso)
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z = observation(xTrue, u, RFID)
gmap = observation_update(gmap, z, STD, xyreso, minx, miny)
if show_animation:
plt.cla()
draw_heatmap(gmap, minx, maxx, miny, maxy, xyreso)
plt.plot(ox, oy, "xr")
plt.plot(0.0, 0.0, "ob")
plt.pause(1.0)
plt.plot(xTrue[0, :], xTrue[1, :], "xr")
plt.plot(RFID[:, 0], RFID[:, 1], ".k")
for i in range(z.shape[0]):
plt.plot([xTrue[0, :], z[i, 1]], [
xTrue[1, :], z[i, 2]], "-k")
plt.title("Time[s]:" + str(time)[0: 4])
plt.pause(0.1)
print("Done")
if __name__ == '__main__':