mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 13:18:18 -05:00
keep coding
This commit is contained in:
@@ -12,44 +12,55 @@ import matplotlib.pyplot as plt
|
||||
from scipy.stats import norm
|
||||
|
||||
EXTEND_AREA = 10.0 # [m] grid map extention length
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
DT = 0.1 # time tick [s]
|
||||
MAX_RANGE = 10.0 # maximum observation range
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def generate_gaussian_grid_map(ox, oy, xyreso, std):
|
||||
def observation_update(gmap, z, std, xyreso, minx, miny):
|
||||
|
||||
minx, miny, maxx, maxy, xw, yw = calc_grid_map_config(ox, oy, xyreso)
|
||||
for iz in range(z.shape[0]):
|
||||
for ix in range(len(gmap)):
|
||||
for iy in range(len(gmap[ix])):
|
||||
|
||||
gmap = [[0.0 for i in range(yw)] for i in range(xw)]
|
||||
zr = z[iz, 0]
|
||||
x = ix * xyreso + minx
|
||||
y = iy * xyreso + miny
|
||||
|
||||
for ix in range(xw):
|
||||
for iy in range(yw):
|
||||
d = math.sqrt((x - z[iz, 1])**2 + (y - z[iz, 2])**2)
|
||||
|
||||
x = ix * xyreso + minx
|
||||
y = iy * xyreso + miny
|
||||
pdf = (1.0 - norm.cdf(abs(d - zr), 0.0, std))
|
||||
gmap[ix][iy] *= pdf
|
||||
|
||||
# Search minimum distance
|
||||
mindis = float("inf")
|
||||
for (iox, ioy) in zip(ox, oy):
|
||||
d = math.sqrt((iox - x)**2 + (ioy - y)**2)
|
||||
if mindis >= d:
|
||||
mindis = d
|
||||
gmap = normalize_probability(gmap)
|
||||
|
||||
pdf = (1.0 - norm.cdf(mindis, 0.0, std))
|
||||
gmap[ix][iy] = pdf
|
||||
|
||||
return gmap, minx, maxx, miny, maxy
|
||||
return gmap
|
||||
|
||||
|
||||
def calc_grid_map_config(ox, oy, xyreso):
|
||||
minx = round(min(ox) - EXTEND_AREA / 2.0)
|
||||
miny = round(min(oy) - EXTEND_AREA / 2.0)
|
||||
maxx = round(max(ox) + EXTEND_AREA / 2.0)
|
||||
maxy = round(max(oy) + EXTEND_AREA / 2.0)
|
||||
xw = int(round((maxx - minx) / xyreso))
|
||||
yw = int(round((maxy - miny) / xyreso))
|
||||
def calc_input():
|
||||
v = 1.0 # [m/s]
|
||||
yawrate = 0.1 # [rad/s]
|
||||
u = np.matrix([v, yawrate]).T
|
||||
return u
|
||||
|
||||
return minx, miny, maxx, maxy, xw, yw
|
||||
|
||||
def motion_model(x, u):
|
||||
|
||||
F = np.matrix([[1.0, 0, 0, 0],
|
||||
[0, 1.0, 0, 0],
|
||||
[0, 0, 1.0, 0],
|
||||
[0, 0, 0, 0]])
|
||||
|
||||
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT],
|
||||
[1.0, 0.0]])
|
||||
|
||||
x = F * x + B * u
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def draw_heatmap(data, minx, maxx, miny, maxy, xyreso):
|
||||
@@ -59,24 +70,91 @@ def draw_heatmap(data, minx, maxx, miny, maxy, xyreso):
|
||||
plt.axis("equal")
|
||||
|
||||
|
||||
def observation(xTrue, u, RFID):
|
||||
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.matrix(np.zeros((0, 3)))
|
||||
|
||||
for i in range(len(RFID[:, 0])):
|
||||
|
||||
dx = xTrue[0, 0] - RFID[i, 0]
|
||||
dy = xTrue[1, 0] - RFID[i, 1]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
if d <= MAX_RANGE:
|
||||
dn = d
|
||||
zi = np.matrix([dn, RFID[i, 0], RFID[i, 1]])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
return xTrue, z
|
||||
|
||||
|
||||
def normalize_probability(gmap):
|
||||
|
||||
sump = sum([sum(igmap) for igmap in gmap])
|
||||
# print(sump)
|
||||
|
||||
for i in range(len(gmap)):
|
||||
for ii in range(len(gmap[i])):
|
||||
gmap[i][ii] /= sump
|
||||
|
||||
return gmap
|
||||
|
||||
|
||||
def init_gmap(xyreso):
|
||||
|
||||
minx = -15.0
|
||||
miny = -5.0
|
||||
maxx = 15.0
|
||||
maxy = 25.0
|
||||
xw = int(round((maxx - minx) / xyreso))
|
||||
yw = int(round((maxy - miny) / xyreso))
|
||||
|
||||
gmap = [[1.0 for i in range(yw)] for i in range(xw)]
|
||||
gmap = normalize_probability(gmap)
|
||||
|
||||
return gmap, minx, maxx, miny, maxy,
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
xyreso = 0.5 # xy grid resolution
|
||||
STD = 5.0 # standard diviation for gaussian distribution
|
||||
STD = 1.0 # standard diviation for gaussian distribution
|
||||
|
||||
for i in range(5):
|
||||
ox = (np.random.rand(4) - 0.5) * 10.0
|
||||
oy = (np.random.rand(4) - 0.5) * 10.0
|
||||
gmap, minx, maxx, miny, maxy = generate_gaussian_grid_map(
|
||||
ox, oy, xyreso, STD)
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, 0.0],
|
||||
[10.0, 10.0],
|
||||
[0.0, 15.0],
|
||||
[-5.0, 20.0]])
|
||||
|
||||
time = 0.0
|
||||
|
||||
xTrue = np.matrix(np.zeros((4, 1)))
|
||||
|
||||
gmap, minx, maxx, miny, maxy = init_gmap(xyreso)
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
|
||||
u = calc_input()
|
||||
xTrue, z = observation(xTrue, u, RFID)
|
||||
|
||||
gmap = observation_update(gmap, z, STD, xyreso, minx, miny)
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
draw_heatmap(gmap, minx, maxx, miny, maxy, xyreso)
|
||||
plt.plot(ox, oy, "xr")
|
||||
plt.plot(0.0, 0.0, "ob")
|
||||
plt.pause(1.0)
|
||||
plt.plot(xTrue[0, :], xTrue[1, :], "xr")
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], ".k")
|
||||
for i in range(z.shape[0]):
|
||||
plt.plot([xTrue[0, :], z[i, 1]], [
|
||||
xTrue[1, :], z[i, 2]], "-k")
|
||||
plt.title("Time[s]:" + str(time)[0: 4])
|
||||
plt.pause(0.1)
|
||||
|
||||
print("Done")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Reference in New Issue
Block a user