mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-02-01 19:15:01 -05:00
fix randn usage and code clean up
This commit is contained in:
@@ -4,16 +4,16 @@ author: Atsushi Sakai (@Atsushi_twi)
|
||||
"""
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# EKF state covariance
|
||||
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)])**2
|
||||
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)]) ** 2
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.2, np.deg2rad(1.0)])**2
|
||||
Rsim = np.diag([1.0, np.deg2rad(10.0)])**2
|
||||
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
|
||||
R_sim = np.diag([1.0, np.deg2rad(10.0)]) ** 2
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
@@ -26,7 +26,6 @@ show_animation = True
|
||||
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
|
||||
# Predict
|
||||
S = STATE_SIZE
|
||||
xEst[0:S] = motion_model(xEst[0:S], u)
|
||||
@@ -36,18 +35,18 @@ def ekf_slam(xEst, PEst, u, z):
|
||||
|
||||
# Update
|
||||
for iz in range(len(z[:, 0])): # for each observation
|
||||
minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2])
|
||||
minid = search_correspond_landmark_id(xEst, PEst, z[iz, 0:2])
|
||||
|
||||
nLM = calc_n_LM(xEst)
|
||||
nLM = calc_n_lm(xEst)
|
||||
if minid == nLM:
|
||||
print("New LM")
|
||||
# Extend state and covariance matrix
|
||||
xAug = np.vstack((xEst, calc_LM_Pos(xEst, z[iz, :])))
|
||||
xAug = np.vstack((xEst, calc_landmark_position(xEst, z[iz, :])))
|
||||
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
|
||||
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
|
||||
xEst = xAug
|
||||
PEst = PAug
|
||||
lm = get_LM_Pos_from_state(xEst, minid)
|
||||
lm = get_landmark_position_from_state(xEst, minid)
|
||||
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)
|
||||
|
||||
K = (PEst @ H.T) @ np.linalg.inv(S)
|
||||
@@ -67,7 +66,6 @@ def calc_input():
|
||||
|
||||
|
||||
def observation(xTrue, xd, u, RFID):
|
||||
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
@@ -77,25 +75,24 @@ def observation(xTrue, xd, u, RFID):
|
||||
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
d = math.sqrt(dx ** 2 + dy ** 2)
|
||||
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||||
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
|
||||
anglen = angle + np.random.randn() * Q_sim[1, 1] ** 0.5 # add noise
|
||||
zi = np.array([dn, anglen, i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
ud = np.array([[
|
||||
u[0, 0] + np.random.randn() * Rsim[0, 0],
|
||||
u[1, 0] + np.random.randn() * Rsim[1, 1]]]).T
|
||||
u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5,
|
||||
u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5]]).T
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
|
||||
def motion_model(x, u):
|
||||
|
||||
F = np.array([[1.0, 0, 0],
|
||||
[0, 1.0, 0],
|
||||
[0, 0, 1.0]])
|
||||
@@ -108,15 +105,14 @@ def motion_model(x, u):
|
||||
return x
|
||||
|
||||
|
||||
def calc_n_LM(x):
|
||||
def calc_n_lm(x):
|
||||
n = int((len(x) - STATE_SIZE) / LM_SIZE)
|
||||
return n
|
||||
|
||||
|
||||
def jacob_motion(x, u):
|
||||
|
||||
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
|
||||
(STATE_SIZE, LM_SIZE * calc_n_LM(x)))))
|
||||
(STATE_SIZE, LM_SIZE * calc_n_lm(x)))))
|
||||
|
||||
jF = np.array([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],
|
||||
[0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],
|
||||
@@ -127,35 +123,34 @@ def jacob_motion(x, u):
|
||||
return G, Fx,
|
||||
|
||||
|
||||
def calc_LM_Pos(x, z):
|
||||
def calc_landmark_position(x, z):
|
||||
zp = np.zeros((2, 1))
|
||||
|
||||
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
|
||||
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
|
||||
#zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])
|
||||
#zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])
|
||||
# zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])
|
||||
# zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])
|
||||
|
||||
return zp
|
||||
|
||||
|
||||
def get_LM_Pos_from_state(x, ind):
|
||||
|
||||
def get_landmark_position_from_state(x, ind):
|
||||
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
|
||||
|
||||
return lm
|
||||
|
||||
|
||||
def search_correspond_LM_ID(xAug, PAug, zi):
|
||||
def search_correspond_landmark_id(xAug, PAug, zi):
|
||||
"""
|
||||
Landmark association with Mahalanobis distance
|
||||
"""
|
||||
|
||||
nLM = calc_n_LM(xAug)
|
||||
nLM = calc_n_lm(xAug)
|
||||
|
||||
mdist = []
|
||||
|
||||
for i in range(nLM):
|
||||
lm = get_LM_Pos_from_state(xAug, i)
|
||||
lm = get_landmark_position_from_state(xAug, i)
|
||||
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
|
||||
mdist.append(y.T @ np.linalg.inv(S) @ y)
|
||||
|
||||
@@ -173,19 +168,19 @@ def calc_innovation(lm, xEst, PEst, z, LMid):
|
||||
zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])
|
||||
y = (z - zp).T
|
||||
y[1] = pi_2_pi(y[1])
|
||||
H = jacobH(q, delta, xEst, LMid + 1)
|
||||
H = jacob_h(q, delta, xEst, LMid + 1)
|
||||
S = H @ PEst @ H.T + Cx[0:2, 0:2]
|
||||
|
||||
return y, S, H
|
||||
|
||||
|
||||
def jacobH(q, delta, x, i):
|
||||
def jacob_h(q, delta, x, i):
|
||||
sq = math.sqrt(q)
|
||||
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
|
||||
[delta[1, 0], - delta[0, 0], - 1.0, - delta[1, 0], delta[0, 0]]])
|
||||
|
||||
G = G / q
|
||||
nLM = calc_n_LM(x)
|
||||
nLM = calc_n_lm(x)
|
||||
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
|
||||
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
|
||||
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
|
||||
@@ -246,7 +241,7 @@ def main():
|
||||
plt.plot(xEst[0], xEst[1], ".r")
|
||||
|
||||
# plot landmark
|
||||
for i in range(calc_n_LM(xEst)):
|
||||
for i in range(calc_n_lm(xEst)):
|
||||
plt.plot(xEst[STATE_SIZE + i * 2],
|
||||
xEst[STATE_SIZE + i * 2 + 1], "xg")
|
||||
|
||||
@@ -262,4 +257,4 @@ def main():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user