Adding all gifs to the doc (#586)

* update docs

* update docs

* update docs

* update docs
This commit is contained in:
Atsushi Sakai
2021-11-29 00:01:06 +09:00
committed by GitHub
parent c99716d692
commit d183a00a1c
37 changed files with 186 additions and 208 deletions

View File

View File

@@ -0,0 +1,131 @@
"""
Move to specified pose
Author: Daniel Ingram (daniel-s-ingram)
Atsushi Sakai(@Atsushi_twi)
P. I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7
"""
import matplotlib.pyplot as plt
import numpy as np
from random import random
# simulation parameters
Kp_rho = 9
Kp_alpha = 15
Kp_beta = -3
dt = 0.01
show_animation = True
def move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal):
"""
rho is the distance between the robot and the goal position
alpha is the angle to the goal relative to the heading of the robot
beta is the angle between the robot's position and the goal position plus the goal angle
Kp_rho*rho and Kp_alpha*alpha drive the robot along a line towards the goal
Kp_beta*beta rotates the line so that it is parallel to the goal angle
"""
x = x_start
y = y_start
theta = theta_start
x_diff = x_goal - x
y_diff = y_goal - y
x_traj, y_traj = [], []
rho = np.hypot(x_diff, y_diff)
while rho > 0.001:
x_traj.append(x)
y_traj.append(y)
x_diff = x_goal - x
y_diff = y_goal - y
# Restrict alpha and beta (angle differences) to the range
# [-pi, pi] to prevent unstable behavior e.g. difference going
# from 0 rad to 2*pi rad with slight turn
rho = np.hypot(x_diff, y_diff)
alpha = (np.arctan2(y_diff, x_diff)
- theta + np.pi) % (2 * np.pi) - np.pi
beta = (theta_goal - theta - alpha + np.pi) % (2 * np.pi) - np.pi
v = Kp_rho * rho
w = Kp_alpha * alpha + Kp_beta * beta
if alpha > np.pi / 2 or alpha < -np.pi / 2:
v = -v
theta = theta + w * dt
x = x + v * np.cos(theta) * dt
y = y + v * np.sin(theta) * dt
if show_animation: # pragma: no cover
plt.cla()
plt.arrow(x_start, y_start, np.cos(theta_start),
np.sin(theta_start), color='r', width=0.1)
plt.arrow(x_goal, y_goal, np.cos(theta_goal),
np.sin(theta_goal), color='g', width=0.1)
plot_vehicle(x, y, theta, x_traj, y_traj)
def plot_vehicle(x, y, theta, x_traj, y_traj): # pragma: no cover
# Corners of triangular vehicle when pointing to the right (0 radians)
p1_i = np.array([0.5, 0, 1]).T
p2_i = np.array([-0.5, 0.25, 1]).T
p3_i = np.array([-0.5, -0.25, 1]).T
T = transformation_matrix(x, y, theta)
p1 = np.matmul(T, p1_i)
p2 = np.matmul(T, p2_i)
p3 = np.matmul(T, p3_i)
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'k-')
plt.plot([p2[0], p3[0]], [p2[1], p3[1]], 'k-')
plt.plot([p3[0], p1[0]], [p3[1], p1[1]], 'k-')
plt.plot(x_traj, y_traj, 'b--')
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.xlim(0, 20)
plt.ylim(0, 20)
plt.pause(dt)
def transformation_matrix(x, y, theta):
return np.array([
[np.cos(theta), -np.sin(theta), x],
[np.sin(theta), np.cos(theta), y],
[0, 0, 1]
])
def main():
for i in range(5):
x_start = 20 * random()
y_start = 20 * random()
theta_start = 2 * np.pi * random() - np.pi
x_goal = 20 * random()
y_goal = 20 * random()
theta_goal = 2 * np.pi * random() - np.pi
print("Initial x: %.2f m\nInitial y: %.2f m\nInitial theta: %.2f rad\n" %
(x_start, y_start, theta_start))
print("Goal x: %.2f m\nGoal y: %.2f m\nGoal theta: %.2f rad\n" %
(x_goal, y_goal, theta_goal))
move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal)
if __name__ == '__main__':
main()