first release own rs path

This commit is contained in:
Atsushi Sakai
2018-02-07 13:38:26 -08:00
parent c5f2c5c672
commit d700425402

View File

@@ -5,7 +5,6 @@ Reeds Shepp path planner sample code
author Atsushi Sakai(@Atsushi_twi)
"""
import reeds_shepp
import numpy as np
import math
import matplotlib.pyplot as plt
@@ -117,6 +116,62 @@ def LSL(x, y, phi):
return False, 0.0, 0.0, 0.0
def LRL(x, y, phi):
u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if u1 <= 4.0:
u = -2.0 * math.asin(0.25 * u1)
t = mod2pi(t1 + 0.5 * u + math.pi)
v = mod2pi(phi - t + u)
if t >= 0.0 and u <= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def CCC(x, y, phi, paths):
flag, t, u, v = LRL(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"])
flag, t, u, v = LRL(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"])
flag, t, u, v = LRL(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"])
flag, t, u, v = LRL(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"])
# backwards
xb = x * math.cos(phi) + y * math.sin(phi)
yb = x * math.sin(phi) - y * math.cos(phi)
# println(xb, ",", yb,",",x,",",y)
flag, t, u, v = LRL(xb, yb, phi)
if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"])
flag, t, u, v = LRL(-xb, yb, -phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"])
flag, t, u, v = LRL(xb, -yb, -phi)
if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"])
flag, t, u, v = LRL(-xb, -yb, phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"])
return paths
def CSC(x, y, phi, paths):
flag, t, u, v = LSL(x, y, phi)
if flag:
@@ -180,7 +235,7 @@ def generate_path(q0, q1, maxc):
paths = []
paths = SCS(x, y, dth, paths)
paths = CSC(x, y, dth, paths)
# paths = CCC(x, y, dth, paths)
paths = CCC(x, y, dth, paths)
return paths
@@ -308,8 +363,8 @@ def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
return paths
def reeds_shepp_path_planning2(sx, sy, syaw,
gx, gy, gyaw, maxc, step_size):
def reeds_shepp_path_planning(sx, sy, syaw,
gx, gy, gyaw, maxc, step_size):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
@@ -329,40 +384,52 @@ def reeds_shepp_path_planning2(sx, sy, syaw,
return bpath.x, bpath.y, bpath.yaw, bpath.ctypes, bpath.lengths
def reeds_shepp_path_planning(start_x, start_y, start_yaw,
end_x, end_y, end_yaw, curvature):
step_size = 0.1
q0 = [start_x, start_y, start_yaw]
q1 = [end_x, end_y, end_yaw]
qs = reeds_shepp.path_sample(q0, q1, 1.0 / curvature, step_size)
xs = [q[0] for q in qs]
ys = [q[1] for q in qs]
yaw = [q[2] for q in qs]
def test():
xs.append(end_x)
ys.append(end_y)
yaw.append(end_yaw)
NTEST = 100
clen = reeds_shepp.path_length(q0, q1, 1.0 / curvature)
pathtypeTuple = reeds_shepp.path_type(q0, q1, 1.0 / curvature)
for i in range(NTEST):
start_x = (np.random.rand() - 0.5) * 100.0 # [m]
start_y = (np.random.rand() - 0.5) * 100.0 # [m]
start_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad]
ptype = ""
for t in pathtypeTuple:
if t == 1:
ptype += "L"
elif t == 2:
ptype += "S"
elif t == 3:
ptype += "R"
end_x = (np.random.rand() - 0.5) * 100.0 # [m]
end_y = (np.random.rand() - 0.5) * 100.0 # [m]
end_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad]
return xs, ys, yaw, ptype, clen
curvature = 1.0 / (np.random.rand() * 20.0)
# print(curvature)
step_size = 0.1
# print(start_x, start_y, start_yaw)
# print(end_x, end_y, end_yaw)
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size)
# print(len(px))
# plt.plot(px, py, label="final course " + str(mode))
# plotting
# plot_arrow(start_x, start_y, start_yaw)
# plot_arrow(end_x, end_y, end_yaw)
# plt.legend()
# plt.grid(True)
# plt.axis("equal")
# plt.show()
if not px:
assert False, "No path"
print("Test done")
def main():
print("Reeds Shepp path planner sample start!!")
start_x = 1.0 # [m]
start_y = 14.0 # [m]
start_x = -1.0 # [m]
start_y = -4.0 # [m]
start_yaw = math.radians(-20.0) # [rad]
end_x = 5.0 # [m]
@@ -372,15 +439,9 @@ def main():
curvature = 1.0
step_size = 0.1
px, py, pyaw, mode, clen = reeds_shepp_path_planning2(
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size)
if not px:
assert False, "No path"
# px, py, pyaw, mode, clen = reeds_shepp_path_planning(
# start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
if show_animation:
plt.plot(px, py, label="final course " + str(mode))
@@ -388,15 +449,15 @@ def main():
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
# for (ix, iy, iyaw) in zip(px, py, pyaw):
# plot_arrow(ix, iy, iyaw, fc="b")
# print(clen)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()
if not px:
assert False, "No path"
if __name__ == '__main__':
test()
main()