add new sample

This commit is contained in:
AtsushiSakai
2016-03-27 17:08:00 +09:00
parent 786ef04335
commit db832a65c9
2 changed files with 278 additions and 0 deletions

View File

@@ -0,0 +1,277 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
u"""
@brief: Path Planning Sample Code with Randamized Rapidly-Exploring Random Trees (RRT)
@author: AtsushiSakai
@license: MIT
"""
import random
import math
import copy
class RRT():
u"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList,randArea,expandDis=1.0,goalSampleRate=5,maxIter=500):
u"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start=Node(start[0],start[1])
self.end=Node(goal[0],goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.expandDis = expandDis
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
def Planning(self,animation=True):
u"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
while True:
# Random Sampling
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand)]
else:
rnd = [self.end.x, self.end.y]
# Find nearest node
nind = self.GetNearestListIndex(self.nodeList, rnd)
# print(nind)
# expand tree
nearestNode =self.nodeList[nind]
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = copy.deepcopy(nearestNode)
newNode.x += self.expandDis * math.cos(theta)
newNode.y += self.expandDis * math.sin(theta)
newNode.parent = nind
if not self.__CollisionCheck(newNode, obstacleList):
continue
self.nodeList.append(newNode)
# check goal
dx = newNode.x - self.end.x
dy = newNode.y - self.end.y
d = math.sqrt(dx * dx + dy * dy)
if d <= self.expandDis:
print("Goal!!")
break
if animation:
self.DrawGraph(rnd)
path=[[self.end.x,self.end.y]]
lastIndex = len(self.nodeList) - 1
while self.nodeList[lastIndex].parent is not None:
node = self.nodeList[lastIndex]
path.append([node.x,node.y])
lastIndex = node.parent
path.append([self.start.x, self.start.y])
return path
def DrawGraph(self,rnd=None):
import matplotlib.pyplot as plt
plt.clf()
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot([node.x, self.nodeList[node.parent].x], [node.y, self.nodeList[node.parent].y], "-g")
for (x,y,size) in obstacleList:
self.PlotCircle(x,y,size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def PlotCircle(self,x,y,size):
deg=range(0,360,5)
deg.append(0)
xl=[x+size*math.cos(math.radians(d)) for d in deg]
yl=[y+size*math.sin(math.radians(d)) for d in deg]
plt.plot(xl, yl, "-k")
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def __CollisionCheck(self, node, obstacleList):
for (ox, oy, size) in obstacleList:
dx = ox - node.x
dy = oy - node.y
d = math.sqrt(dx * dx + dy * dy)
if d <= size:
return False # collision
return True # safe
class Node():
u"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
def GetPathLength(path):
l = 0
for i in range(len(path) - 1):
dx = path[i + 1][0] - path[i][0]
dy = path[i + 1][1] - path[i][1]
d = math.sqrt(dx * dx + dy * dy)
l += d
return l
def GetTargetPoint(path, targetL):
l = 0
ti = 0
lastPairLen = 0
for i in range(len(path) - 1):
dx = path[i + 1][0] - path[i][0]
dy = path[i + 1][1] - path[i][1]
d = math.sqrt(dx * dx + dy * dy)
l += d
if l >= targetL:
ti = i-1
lastPairLen = d
break
partRatio = (l - targetL) / lastPairLen
# print(partRatio)
# print((ti,len(path),path[ti],path[ti+1]))
x = path[ti][0] + (path[ti + 1][0] - path[ti][0]) * partRatio
y = path[ti][1] + (path[ti + 1][1] - path[ti][1]) * partRatio
# print((x,y))
return [x, y, ti]
def LineCollisionCheck(first, second, obstacleList):
# Line Equation
x1=first[0]
y1=first[1]
x2=second[0]
y2=second[1]
try:
a=y2-y1
b=-(x2-x1)
c=y2*(x2-x1)-x2*(y2-y1)
except ZeroDivisionError:
return False
# print(first)
# print(second)
for (ox,oy,size) in obstacleList:
d=abs(a*ox+b*oy+c)/(math.sqrt(a*a+b*b))
# print((ox,oy,size,d))
if d<=(size):
# print("NG")
return False
# print("OK")
return True # OK
def PathSmoothing(path, maxIter, obstacleList):
# print("PathSmoothing")
l = GetPathLength(path)
for i in range(maxIter):
# Sample two points
pickPoints = [random.uniform(0, l), random.uniform(0, l)]
pickPoints.sort()
# print(pickPoints)
first = GetTargetPoint(path, pickPoints[0])
# print(first)
second = GetTargetPoint(path, pickPoints[1])
# print(second)
if first[2]<=0 or second[2]<=0:
continue
if (second[2]+1) > len(path):
continue
if second[2]==first[2]:
continue
# collision check
if not LineCollisionCheck(first, second, obstacleList):
continue
#Create New path
newPath=[]
newPath.extend(path[:first[2]+1])
newPath.append([first[0],first[1]])
newPath.append([second[0],second[1]])
newPath.extend(path[second[2]+1:])
path=newPath
l = GetPathLength(path)
return path
if __name__ == '__main__':
import matplotlib.pyplot as plt
#====Search Path with RRT====
# Parameter
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size]
rrt=RRT(start=[0,0],goal=[5,10],randArea=[-2,15],obstacleList=obstacleList)
path=rrt.Planning(animation=True)
# Draw final path
rrt.DrawGraph()
plt.plot([x for (x,y) in path], [y for (x,y) in path],'-r')
#Path smoothing
maxIter=1000
smoothedPath = PathSmoothing(path, maxIter, obstacleList)
plt.plot([x for (x,y) in smoothedPath], [y for (x,y) in smoothedPath],'-b')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()

View File

@@ -9,6 +9,7 @@ u"""
"""
import random
import math
import copy